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INTRODUCTION: The biodiversity-productivity
relationship (BPR; the effect of biodiversity on
ecosystem productivity) is foundational to our
understanding of the global extinction crisis
and its impacts on the functioning of natural
ecosystems. The BPR has been a prominent
research topic within ecology in recent decades,
but it is only recently that we have begun to
develop a global perspective.

approximately one half of tree species world-
wide. Although there have been substantial
efforts to strengthen the preservation and
sustainable use of forest biodiversity through-
out the globe, the consequences of this di-
versity loss pose a major uncertainty for ongoing
international forest management and conser-
vation efforts. The forest BPR represents a
critical missing link for accurate valuation of
global biodiversity and successful integration
of biological conservation and socioeconomic
development. Until now, there have been limited
tree-based diversity experiments, and the forest
BPR has only been explored within regional-

RATIONALE: Forests are the most important
global repositories of terrestrial biodiversity,
but deforestation, forest degradation, climate
change, and other factors are threatening
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Global effect of tree species diversity on forest productivity. Ground-sourced data from 777126
global forest biodiversity permanent sample plots (dark blue dots, left), which cover a substantial portion
of the global forest extent (white), reveal a consistent positive and concave-down biodiversity-
productivity relationship across forests worldwide (red line with pink bands representing 95% con-
fidence interval, right).
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scale observational studies. Thus, the strength
and spatial variability of this relationship re-
mains unexplored at a global scale.

RESULTS: We explored the effect of tree
species richness on tree volume productivity at
the global scale using repeated forest invento-

ries from 777,126 perma-

nent sample plots in 44

Read the full article ~ countries COI.ltaining more
at http://dx.doi. than 30 million trees from
org/10.1126/ 8737 species spanning most

science.aaf8957 of the global terrestrial bi-

omes. Our findings reveal a
consistent positive concave-down effect of bio-
diversity on forest productivity across the world,
showing that a continued biodiversity loss would
result in an accelerating decline in forest
productivity worldwide.

The BPR shows considerable geospatial var-
iation across the world. The same percentage of
biodiversity loss would lead to a greater relative
(that is, percentage) productivity decline in the
boreal forests of North America, Northeastern
Europe, Central Siberia, East Asia, and scattered
regions of South-central Africa and South-central
Asia. In the Amazon, West and Southeastern
Africa, Southern China, Myanmar, Nepal, and
the Malay Archipelago, however, the same per-
centage of biodiversity loss would lead to greater
absolute productivity decline.

CONCLUSION: Our findings highlight the
negative effect of biodiversity loss on forest
productivity and the potential benefits from
the transition of monocultures to mixed-species
stands in forestry practices. The BPR we dis-
cover across forest ecosystems worldwide
corresponds well with recent theoretical ad-
vances, as well as with experimental and ob-
servational studies on forest and nonforest
ecosystems. On the basis of this relationship,
the ongoing species loss in forest ecosystems
worldwide could substantially reduce forest pro-
ductivity and thereby forest carbon absorption
rate to compromise the global forest carbon
sink. We further estimate that the economic
value of biodiversity in maintaining commer-
cial forest productivity alone is $166 billion to
$490 billion per year. Although representing
only a small percentage of the total value of
biodiversity, this value is two to six times as
much as it would cost to effectively implement
conservation globally. These results highlight
the necessity to reassess biodiversity valuation
and the potential benefits of integrating and
promoting biological conservation in forest
resource management and forestry practices
worldwide.
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The biodiversity-productivity relationship (BPR) is foundational to our understanding of the
global extinction crisis and its impacts on ecosystem functioning. Understanding BPR is critical
for the accurate valuation and effective conservation of biodiversity. Using ground-sourced data
from 777126 permanent plots, spanning 44 countries and most terrestrial biomes, we reveal

a globally consistent positive concave-down BPR, showing that continued biodiversity loss
would result in an accelerating decline in forest productivity worldwide. The value of biodiversity
in maintaining commercial forest productivity alone—US$166 billion to 490 billion per year
according to our estimation—is more than twice what it would cost to implement effective
global conservation. This highlights the need for a worldwide reassessment of biodiversity
values, forest management strategies, and conservation priorities.

he biodiversity-productivity relationship

(BPR) has been a major ecological research

focus over recent decades. The need to

understand this relationship is becoming

increasingly urgent in light of the global
extinction crisis because species loss affects the
functioning and services of natural ecosystems
(1, 2). In response to an emerging body of evidence
that suggests that the functioning of natural eco-
systems may be substantially impaired by reductions
in species richness (3-10), global environment-
al authorities, including the Intergovernmental
Platform on Biodiversity and Ecosystem Services
(IPBES) and United Nations Environment Pro-
gramme (UNEP), have made substantial efforts
to strengthen the preservation and sustainable use
of biodiversity (2, 1I). Successful international
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collaboration, however, requires a systematic asses-
sment of the value of biodiversity (77). Quantifi-
cation of the global BPR is thus urgently needed
to facilitate the accurate valuation of biodiversity
(12), the forecast of future changes in ecosystem
services worldwide (I7), and the integration of
biological conservation into international socio-
economic development strategies (13).

The evidence of a positive BPR stems primarily
from studies of herbaceous plant communities
(14). In contrast, the forest BPR has only been
explored at the regional scale [(3, 4, 7, 15) and
references therein] or within a limited number
of tree-based experiments [(16, 17) and references
therein], and it remains unclear whether these
relationships hold across forest types. Forests
are the most important global repositories of
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terrestrial biodiversity (18), but deforestation,
climate change, and other factors are threat-
ening a considerable proportion (up to 50%) of
tree species worldwide (19-21). The consequences
of this diversity loss pose a critical uncertainty for
ongoing international forest management and
conservation efforts. Conversely, forest manage-
ment that converts monocultures to mixed-species
stands has often seen a substantial positive effect
on productivity with other benefits (22-24). Al-
though forest plantations are predicted to meet 50
t0 75% of the demand for lumber by 2050 (25, 26),
nearly all are still planted as monocultures, high-
lighting the potential of forest management in
strengthening the conservation and sustainable
use of biodiversity worldwide.

Here, we compiled in situ remeasurement data,
most of which were taken at two consecutive
inventories from the same localities, from 777,126
permanent sample plots [hereafter, global forest
biodiversity (GFB) plots] across 44 countries and
territories and 13 ecoregions to explore the forest
BPR at a global scale (Fig. 1). GFB plots encompass
forests of various origins (from naturally re-
generated to planted) and successional stages
(from stand initiation to old-growth). A total of
more than 30 million trees across 8737 species
were tallied and measured on two or more con-
secutive inventories from the GFB plots. Sampling
intensity was greater in developed countries,
where nationwide forest inventories have been
fully or partially funded by governments. In most
other countries, national forest inventories were
lacking, and most ground-sourced data were col-
lected by individuals and organizations (table SI).

On the basis of ground-sourced GFB data, we
quantified BPR at the global scale using a data-
driven ensemble learning approach (Materials
and methods, Geospatial random forest). Our
quantification of BPR involved characterizing
the shape and strength of the dependency func-
tion through the elasticity of substitution (0),
which represents the degree to which species
can substitute for each other in contributing to
forest productivity; 6 measures the marginal
productivity—the change in productivity resulting
from one unit decline of species richness—and
reflects the strength of the effect of tree diversity
on forest productivity, after accounting for cli-
matic, soil, and plot-specific covariates. A higher
0 corresponds to a greater decline in productivity
due to one unit loss in biodiversity. The niche-
efficiency (N-E) model (3) and several preceding
studies (27-30) provide a framework for inter-
preting the elasticity of substitution and approx-
imating BPR with a power function model:

P=q- fX)-S° ()

where P and S signify primary site productivity
and tree species richness (observed on a 900-m>
area basis on average) (Materials and methods),
respectively; f(X) is a function of a vector of con-
trol variables X (selected from stand basal area
and 14 climatic, soil, and topographic covariates);
and o is a constant. This model is capable of
representing a variety of potential patterns of
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BPR. 0 < 0 < 1 represents a positive and concave
down pattern (a degressively increasing curve),
which is consistent with the N-E model and pre-
ceding studies (3, 27-30), whereas other 6 values
can represent alternative BPR patterns, including
decreasing (8 < 0), linear (6 = 1), convex (6 > 1), or
no effect (6 = 0) (Fig. 2) (14, 31). The model (Eq. 1)
was estimated by using the geospatial random
forest technique based on GFB data and covariates
acquired from ground-measured and remote-
sensing data (Materials and methods).

We found that a positive BPR predominated
in forests worldwide. Out of 10,000 randomly se-
lected subsamples (each consisting of 500 GFB
plots), 99.87% had a positive concave-down rela-
tionship with relative species richness (0 < 6 < 1),
whereas only 0.13% show negative trends, and
none was equal to zero or greater than or equal
to 1 (Fig. 2). Overall, the global forest productiv-
ity increased with a declining rate from 2.7 to
11.8 m® ha ' year™ as relative tree species richness
increased from the minimum to the maximum

value, which corresponds to a 6 value of 0.26
(Fig. 3A).

At the global scale, we mapped the magnitude
of BPR (as expressed by 0) using geospatial
random forest and universal kriging. By plotting
values of 6 onto a global map, we revealed con-
siderable geospatial variation across the world
(Fig. 3B). The highest 6 (0.29 to 0.30) occurred
in the boreal forests of North America, North-
eastern Europe, Central Siberia, and East Asia
and the sporadic tropical and subtropical forests
of South-central Africa, South-central Asia, and
the Malay Archipelago. In these areas of the
highest elasticity of substitution (32), the same
percentage of biodiversity loss would lead to a
greater percentage of reduction in forest produc-
tivity (Fig. 4A). In terms of absolute productivity,
the same percentage of biodiversity loss would
lead to the greatest productivity decline in the
Amazon; West Africa’s Gulf of Guinea; South-
eastern Africa, including Madagascar; Southern
China; Myanmar; Nepal; and the Malay Archi-

pelago (Fig. 4B). Because of a relatively narrow
range of the elasticity of substitution (32) esti-
mated from the global-level analysis (0.2 to 0.3),
the regions of the greatest productivity decline
under the same percentage of biodiversity loss
largely matched the regions of the greatest pro-
ductivity (fig. S1). Globally, a 10% decrease in tree
species richness (from 100 to 90%) would cause a
2 to 3% decline in productivity, and with a de-
crease in tree species richness to one (Materials
and methods, Economic analysis), this decline in
forest productivity would be 26 to 66% even if
other things, such as the total number of trees
and forest stocking, remained the same (fig. S4,).

Discussion

Our global analysis provides strong and consistent
evidence that productivity of forests would de-
crease at an accelerating rate with the loss of
biodiversity. The positive concave-down pattern
we discovered across forest ecosystems worldwide
corresponds well with recent theoretical advances
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in BPR (3, 28-30), as well as with experimental
(27) and observational (14) studies on forest and
nonforest ecosystems. The elasticity of substitu-
tion (32) estimated in this study (ranged between
0.2 and 0.3) largely overlaps the range of values
of the same exponent term (0.1 to 0.5) from
previous theoretical and experimental studies
[(10) and references therein]. Furthermore, our
findings are consistent with the global estimates
of the biodiversity-dependent ecosystem service
debt under distinct assumptions (70) and with
recent reports of the diminishing marginal ben-
efits of adding a species as species richness in-
creases, based on long-term forest experiments
dating back to 1870 [(15, 33) and references therein].

Our analysis relied on stands ranging from
unmanaged to extensively managed forests—
managed forests with low operating and invest-

°  GFB plots
Global forest extent|

1. Tropical Moist Broadleaf Forests -

2. Tropical Dry Broadleaf Forests

3. Mangroves

4. Temperate Broadleaf and Mixed Forests -
5. Temperate Conifer Forests -

6. Boreal Forests/Taiga-

7. Tropical Grasslands and Shrublands -

8. Temperate Grasslands and Shrublands+
9. Flooded Grasslands and Savannas

10. Montane Grasslands and Shrublands
11. Tundra-

12. Mediterranean Forests -

13. Deserts and Xeric Shrublands-

ment costs per unit area. Conditions of natural
forests would not be comparable with intensively
managed forests, because timber production in
the latter systems often focuses on a single or
limited number of highly productive tree species.
Intensively managed forests, where saturated re-
sources can weaken the effects of niche efficiency
(3), are shown in some studies (34, 35) to have
higher productivity than that of natural diverse
forests of the same climate and site conditions
(fig. S3). In contrast, other studies (6, 22-24) com-
pared diverse stands with monocultures at the
same level of management intensity and found
that the positive effects of species diversity on
tree productivity and other ecosystem services
are applicable to intensively managed forests.
As such, there is still an unresolved debate on the
BPR of intensively managed forests. Nevertheless,

because intensively managed forests only account
for a minor (<7%) portion of global forests (18),
our estimated BPR would be minimally affected
by such manipulations and thus should reflect
the inherent processes governing the vast majority
of global forest ecosystems.

We focused on the effect of biodiversity on
ecosystem productivity. Recent studies on the op-
posite causal direction [productivity-biodiversity
relationship (14, 36, 37)] suggest that there may be
a potential two-way causality between biodiversity
and productivity. It is admittedly difficult to use
correlative data to detect and attribute causal ef-
fects. Fortunately, substantial progress has been
made to tease the BPR causal relationship from
other potentially confounding environmental
variables (14, 38, 39), and this study made con-
siderable efforts to account for these otherwise

10 100 0.01
Tree species richness

01 1 10 100
Primary site productivity (m*ha'yr™)

Fig. 1. GFB ground-sourced data were collected from in situ remeasure-
ment of 777,126 permanent sample plots consisting of more than 30 million
trees across 8737 species. GFB plots extend across 13 ecoregions [vertical
axis, delineated by the World Wildlife Fund where extensive forests occur within
all the ecoregions (72)], and 44 countries and territories. Ecoregions are named
for their dominant vegetation types, but all contain some forested areas. GFB plots
cover a substantial portion of the global forest extent (white), including some of the
most distinct forest conditions: (a) the northernmost (73°N, Central Siberia, Russia),
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(b) southernmost (52°S, Patagonia, Argentina), (c) coldest (-17°C annual mean
temperature, Oimyakon, Russia), (d) warmest (28°C annual mean temperature,
Palau, United States), and (e) most diverse (405 tree species on the 1-ha plot,
Bahia, Brazil). Plots in war-torn regions [such as (f)] were assigned fuzzed co-
ordinates to protect the identity of the plots and collaborators. The box plots show
the mean and interquartile range of tree species richness and primary site pro-
ductivity (both on a common logarithmic scale) derived from ground-measured tree-
and plot-level records. The complete list of species is presented in table S2.
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Fig. 2. Theoretical positive and concave-down biodiversity—productivity
relationship supported by empirical evidence drawn from the GFB data. (Left)
The diagram demonstrates that under the theoretical positive and concave-down
(monotonically and degressively increasing) BPR (3, 27, 28), loss in tree species
richness may reduce forest productivity (73). (Middle) Functional curves rep-
resent different BPR under different values of elasticity of substitution (8). 6 values

potentially confounding environmental covariates
in assessing likely causal effects of biodiversity
on productivity.

Because taxonomic diversity indirectly incor-
porates functional, phylogenetic, and genomic
diversity, our results that focus on tree species
richness are likely applicable to these other ele-
ments of biodiversity, all of which have been
found to influence plant productivity (7). Our
straightforward analysis makes clear the taxo-
nomic contribution to forest ecosystem produc-
tivity and functioning, and the importance of
preserving species diversity to biological conser-
vation and forest management.

Our findings highlight the necessity to reassess
biodiversity valuation and reevaluate forest man-
agement strategies and conservation priorities in
forests worldwide. In terms of global carbon cycle
and climate change, the value of biodiversity may
be considerable. On the basis of our global-scale
analyses (Fig. 4), the ongoing species loss in forest
ecosystems worldwide (7, 21) could substantially
reduce forest productivity and thereby forest car-
bon absorption rate, which would in turn com-
promise the global forest carbon sink (40). We
further estimate that the economic value of bio-
diversity in maintaining commercial forest pro-
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ductivity is $166 billion to $490 billion per year
(1.66 x 10™ to0 4.90 x 10" year™ in 2015 US$) (Ma-
terials and methods, Economics analysis). By it-
self, this estimate does not account for other values
of forest biodiversity (including potential values
for climate regulation, habitat, water flow regula-
tion, and genetic resources), and represents only a
small percentage of the total value of biodiversity
(41, 42). However, this value is already between
two to six times the total estimated cost that would
be necessary if we were to effectively conserve all
terrestrial ecosystems at a global scale [$76.1 billion
per year (43)]. The high benefit-to-cost ratio under-
lines the importance of conserving biodiversity
for forestry and forest resource management.
Amid the struggle to combat biodiversity loss,
the relationship between biological conservation
and poverty is gaining increasing global atten-
tion (13, 44, especially with respect to rural areas
where livelihoods depend most directly on eco-
system products. Given the substantial geographic
overlaps between severe, multifaceted poverty
and key areas of global biodiversity (45), the
loss of species in these areas has the potential
to exacerbate local poverty by diminishing forest
productivity and related ecosystem services (44).
For example, in tropical and subtropical regions,

0
121

<>
10—

081

between O and 1 correspond to the positive and concave-down BPR (blue curve).
(Right) The three-dimensional scatter plot shows 6 values we estimated from ob-
served productivity (P), species richness (S), and other covariates. Out of 5000000
estimates of 8 (mean = 0.26, SD = 0.09), 4,993,500 fell between 0 and 1 (blue), whereas
only 6500 were negative (red), and none was equal to zero or greater than or equal to
1; the positive and concave-down BPR was supported by 99.9% of our estimates.

many areas of high elasticity of substitution (32)
overlapped with biodiversity hotspots (46), in-
cluding Eastern Himalaya and Nepal, Mountains
of Southwest China, Eastern Afromontane, Madrean
pine-oak woodlands, Tropical Andes, and Cerrado.
For these areas, only a few species of commercial
value are targeted by logging. As such, the risk of
losing species through deforestation would far
exceed the risk through harvesting (47). De-
forestation and other anthropogenic drivers of
biodiversity loss in these biodiversity hotspots
are likely to have considerable impacts on the
productivity of forest ecosystems, with the po-
tential to exacerbate local poverty. Furthermore,
the greater uncertainty in our results for the
developing countries (Fig. 5) reflects the well-
documented geographic bias in forest sampling,
including repeated measurements, and reiterates
the need for strong commitments toward improving
sampling in the poorest regions of the world.
Our findings reflect the combined strength
of large-scale integration and synthesis of eco-
logical data and modern machine learning methods
to increase our understanding of the global forest
system. Such approaches are essential for gen-
erating global insights into the consequences of
biodiversity loss and the potential benefits of
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Fig. 3. The estimated global effect of biodiversity on forest productivity
was positive and concave-down, and revealed considerable geospatial var-
iation across forest ecosystems worldwide. (A) Global effect of biodiversity on
forest productivity (red line with pink bands representing 95% confidence interval)
corresponds to a global average elasticity of substitution (6) value of 0.26, with climatic,
soil, and other plot covariates being accounted for and kept constant at sample mean.

Relative species richness (3) is in the horizontal axis, and productivity (P m® ha ™ year™)
is in the vertical axis (histograms of the two variables on top and right in the logarithm
scale). (B) 6 represents the strength of the effect of tree diversity on forest produc-
tivity. Spatially explicit values of & were estimated by using universal kriging (Materials
and methods) across the current global forest extent (effect sizes of the estimates
are shown in Fig. 5), whereas blank terrestrial areas were nonforested.

integrating and promoting biological conserva-
tion in forest resource management and forestry
practices—a common goal already shared by in-
tergovernmental organizations such as the Mon-
tréal and Helsinki Process Working Groups. These
findings should facilitate efforts to accurately
forecast future changes in ecosystem services
worldwide, which is a primary goal of IPBES
(I1), and provide baseline information necessary
to establish international conservation objectives,
including the United Nations Convention on Bio-
logical Diversity Aichi targets, the United Nations
Framework Convention on Climate Change REDD+
goal, and the United Nations Convention to Combat
Desertification land degradation neutrality goal.
The success of these goals relies on the under-
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standing of the intrinsic link between biodiversity
and forest productivity.

Materials and methods
Data collection and standardization

Our current study used ground-sourced forest
measurement data from 44 forest inventories
collected from 44 countries and territories (Fig.
1and table S1). The measurements were collected
in the field from predesignated sample area units,
i.e., Global Forest Biodiversity permanent sample
plots (hereafter, GFB plots). For the calculation of
primary site productivity, GFB plots can be cat-
egorized into two tiers. Plots designated as “Tier
1” have been measured at two or more points in
time with a minimum time interval between mea-
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surements of two years or more (global mean time
interval is 9 years, see Table 1). “Tier 2” plots were
only measured once, and primary site productivity
can be estimated from known stand age or den-
drochronological records. Overall, our study was
based on 777,126 GFB plots, of which 597,179 (77%)
were Tier 1, and 179,798 (23%) were Tier 2. GFB
plots primarily measured natural forests ranging
from unmanaged to extensively managed forests,
i.e., managed forests with low operating and in-
vestment costs per unit area. Intensively man-
aged forests with harvests exceeding 50 percent
of the stocking volume were excluded from this
study. GFB plots represent forests of various origins
(from naturally regenerated to planted) and succes-
sional stages (from stand initiation to old-growth).
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Table 1. Definition, unit, and summary statistics of key variables.

Variable Definition Unit Mean Standard Source Nominal
deviation resolution
Response variables
P Primary forest m® ha! year™! 757 14.52 Author-generated
productivity measured in from ground-measured
periodic annual increment in stem data
volume (PAl)
Plot attributes
S) Tree species unitless 5.79 8.64 ground-measured
richness, the number of live tree
species observed on
the plot
A Plot size, ha 0.04 0.12 ground-measured
area of the
sample plot
Y Elapsed time year 8.63 11.62 ground-measured
between two
consecutive
inventories
G Basal area, m? ha! 19.00 18.94 Author-generated
total cross-sectional from ground-measured
area of live trees data
measured at 1.3
to 1.4 m above ground
E Plot elevation m 469.30 565.92 G/SRTM (74)
I; Indicator of plot tier unitless 0.23 042 Author-generated
I; = 1if a plot was from ground-measured
Tier-2, data
I; = O if otherwise
I Indicator of plot size unitless 143 0.80 Author-generated
I>=1when 0.01 < ps < 0.05, from ground-measured
I =2 when 0.05 < ps <0.15, data
I, = 3 when 0.15 < ps < 0.50,
I> = 4 when 0.50 < ps < 1.00,
where ps was plot
size (hectares)
Climatic covariates
T; Annual mean temperature 0.1°C 1084 55.92 WorldClim v.1 (75) 1km?
T Isothermality unitless 3543 7.05 WorldClim v.1 1km?
index*100
T3 Temperature seasonality Std.(0.001°C) 7786.00 2092.39 WorldClim v.1 1km?
C; Annual precipitation mm 1020.00 388.35 WorldClim v.1 1km?
C> Precipitation seasonality unitless% 2754 16.38 WorldClim v.1 1 km?
(coefficient of variation)
Cs Precipitation of warmest mm 282.00 120.88 WorldClim v.1 1km?
quarter
PET Global Potential Evapotranspiration mm year 106343 271.80 CGIAR-CSI (76) 1km?
IAA Indexed Annual Aridity unitless index*10~# 9915.09 4512.99 CGIAR-CSI 1km?
Soil covariates
0; Bulk density gcm™ 0.70 0.57 WISE30sec v.1 (77) 1 km?
(05} pH measured in water unitless 3.72 2.80 WISE30sec v.1 1 km?
O3 Electrical conductivity dSm 0.44 0.76 WISE30sec v.1 1km?
04 C/N ratio unitless 9.64 778 WISE30sec v.1 1km?
Os Total nitrogen g kg 271 4.62 WISE30sec v.1 1km?
Geographic coordinates and classification
X Longitude in WGS84 datum degree
y Latitude in WGS84 datum degree
Ecoregion Ecoregion defined by World Wildlife Fund (78)
aaf8957-6 14 OCTOBER 2016 « VOL 354 ISSUE 6309 sciencemag.org SCIENCE
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Fig. 4. Estimated percentage and absolute decline in forest productivity under 10 and 99% decline in current tree species richness (values in par-
entheses correspond to 99%), holding all the other terms constant. (A) Percent decline in productivity was calculated according to the general BPR model (Eq.
1) and estimated worldwide spatially explicit values of the elasticity of substitution (Fig. 3B). (B) Absolute decline in productivity was derived from the estimated elasticity of
substitution (Fig. 3B) and estimates of global forest productivity (fig. S1). The first 10% reduction in tree species richness would lead to a 0.001 to 0.597 m* ha™* year™
decline in periodic annual increment, which accounts for 2 to 3% of current forest productivity. The raster data are displayed in 50-km resolution with a 3 SD stretch.

For each GFB plot, we derived three key at-
tributes from measurements of individual trees—
tree species richness (S), stand basal area (G), and
primary site productivity (P). Because for each of
all the GFB plot samples, S and P were derived
from the measurements of the same trees, the
sampling issues commonly associated with bio-
diversity estimation (48) had little influence on
the S-P relationship (i.e., BPR) in this study.

Species richness, S, represents the number of
different tree species alive at the time of inventory
within the perimeter of a GFB plot with an aver-
age size of approximately 900 m>. Ninety-five
percent of all plots fall between 100 and 1,100 m?
in size. To minimize the species-area effect (49),
we studied the BPR here using a geospatial random
forest model in which observations from nearby
GFB plots would be more influential than plots
that are farther apart (see §Geospatial random
forest). Because nearby plots are most likely from
the same forest inventory data set, and there was
no or little variation of plot area within each data
set, the BPR derived from this model largely re-
flected patterns under the same plot area basis.
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To investigate the potential effects of plot size on
our results, we plotted the estimated elasticity of
substitution (0) against plot size, and found that
the scatter plot was normally distributed with no
discernible pattern (fig. S2). In addition, the fact
that the plot size indicator I, had the second
lowest (0.8%) importance score (50) among all
the covariates (Fig. 6) further supports that the
influence of plot size variation in this study
was negligible.

Across all the GFB plots, there were 8,737 species
in 1,862 genera and 231 families, and S values
ranged from 1 to 405 per plot. We verified all
the species names against 60 taxonomic data-
bases, including NCBI, GRIN Taxonomy for Plants,
Tropicos-Missouri Botanical Garden, and the
International Plant Names Index, using the
‘taxize’ package in R (51). Out of 8737 species
recorded in the GFB database, 7425 had verified
taxonomic information with a matching score
(51) of 0.988 or higher, whereas 1312 species names
partially matched existing taxonomic databases
with a matching score between 0.50 and 0.75,
indicating that these species may have not been
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documented in the 60 taxonomic databases. To
facilitate inter-biome comparison, we further
developed relative species richness (S), a con-
tinuous percentage score converted from species
richness (S) and the maximal species richness of
a set of sample plots (S*) using

- S
S== 2)

Stand basal area (G, in m? ha™?) represents the
total cross-sectional area of live trees per unit
sample area. G was calculated from individual
tree diameter-at-breast-height (dbh, in cm):

G = 0.000079- ) _ dbh}-x; 3)
i

where «; denotes the conversion factor (ha™) of
the 7th tree, viz. the number of trees per ha
represented by that individual. G is a key biotic
factor of forest productivity as it represents
stand density—often used as a surrogate for re-
source acquisition (through leaf area) and stand
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Fig. 5. Standard error and generalized R? of the spatially explicit estimates of elasticity of substitution (8) across the current global forest extent
in relation to $. (A) Standard error increased as a location was farther from those sampled. (B) The generalized R? values were derived with a geostatistical
nonlinear mixed-effects model for GFB sample locations, and thus (B) only covers a subset of the current global forest extent.

competition (52). Accounting for basal area as a
covariate mitigated the artifact of different min-
imum dbh across inventories, and the artifact of
different plot sizes.

Primary site productivity (P, in m® ha™ yr™)
was measured as tree volume productivity in
terms of periodic annual increment (PAI) cal-
culated from the sum of individual tree stem
volume (¥, in m®)

> Viski=Y Vizki +M

i2 il
P - ©
where V;; and V;, (in m?®) represent total stem
volume of the ith tree at the time of the first
inventory and the second inventory, respectively.
M denotes total removal of trees (including mor-
tality, harvest, and thinning) in stem volume
(in m® ha™). Y represents the time interval (in
years) between two consecutive inventories. P
accounted for mortality, ingrowth (i.e., recruit-
ment between two inventories), and volume
growth. Stem volume values were predominantly
calculated using region- and species-specific al-
lometric equations based on dbh and other tree-
and plot-level attributes (Table 1). For the regions
lacking an allometric equation, we approximated

aaf8957-8

14 OCTOBER 2016 « VOL 354 ISSUE 6309

stem volume at the stand level from basal area,
total tree height, and stand form factors (53). In
case of missing tree height values from the
ground measurement, we acquired alternative
measures from a global 1-km forest canopy height
database (54). For Tier 2 plots that lacked re-
measurement, P was measured in mean annual
increment (MAI) based on total stand volume
and stand age (52), or tree radial growth mea-
sured from increment cores. Since the traditional
MAI metric does not account for mortality, we
calculated P by adding to MAI the annual mor-
tality based on regional-specific forest turnover
rates (55). The small and insignificant correla-
tion coefficient between P and the indicator of
plot tier (1), together with the negligible variable
importance of ; (1.8%, Fig. 6), indicate that PAI
and MAI were generally consistent, such that MAI
could be a good proxy of PAI in our study. Al-
though MAI and PAI have considerable uncer-
tainty in any given stand, it is difficult to see
how systematic bias across diversity gradients
could occur on a scale sufficient to influence the
results shown here.

P, although only representing a fraction of total
forest net primary production, has been an im-
portant and widely used measure of forest pro-

ductivity, because it reflects the dominant
aboveground biomass component and the long-
lived biomass pool in most forest ecosystems
(566). Additionally, although other measures of
productivity (e.g., net ecosystem exchange pro-
cessed to derive gross and net primary produc-
tion; direct measures of aboveground net primary
production including all components; and remotely
sensed estimates of LAI and greenness coupled
with models) all have their advantages and dis-
advantages, none would be feasible at a similar
scale and resolution as in this study.

To account for abiotic factors that may in-
fluence primary site productivity, we compiled
14 geospatial covariates based on biological rel-
evance and spatial resolution (Fig. 6). These co-
variates, derived from satellite-based remote sensing
and ground-based survey data, can be grouped into
three categories: climatic, soil, and topographic
(Table 1). We preprocessed all geospatial covar-
iates using ArcMap 10.3 (57) and R 2.15.3 (568). All
covariates were extracted to point locations of
GFB plots, with a nominal resolution of 1 km?.

Geospatial random forest

We developed geospatial random forest—a data-
driven ensemble learning approach—to characterize
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the biodiversity-productivity relationship (BPR),
and to map BPR in terms of elasticity of sub-
stitution (31) on all sample sites across the world.
This approach was developed to overcome two
major challenges that arose from the size and
complexity of GFB data without assuming any
underlying BPR patterns or data distribution.
First, we need to account for broad-scale dif-
ferences in vegetation types, but global classi-
fication and mapping of homogeneous vegetation
types is lacking (59); and secondly, correlations
and trends that naturally occur through space
(60) can be significant and influential in forest
ecosystems (671). Geostatistical models (62) have
been developed to address the spatial auto-
correlation, but the size of the GFB data set far
exceeds the computational constraints of most
geostatistical software.

Geospatial random forest integrated conven-
tional random forest (50) and a geostatistical
nonlinear mixed-effects model (63) to estimate
BPR across the world based on GFB plot data
and their spatial dependence. The underlying
model had the following form

log Pyj(u) = 6;-1ogS;(u) + a;-Xj5()
+e;(u),ueDcR?, (5)

where logP;(u) and logﬁij(u) represent natural
logarithm of productivity and relative species
richness (calculated from actual species rich-
ness and the maximal species richness of the
training set) of plot 7 in the jth training set at
point locations u, respectively. The model was
derived from the niche-efficiency model, and 6
corresponds to the elasticity of substitution
(3D). 03 X55(W)=010 + Oy @yjg+...+ Oy dyj, TEPLE-
sents n covariates and their coefficients (Fig. 6
and Table 1).

To account for potential spatial autocorrelation,
which can bias tests of significance due to the
violation of independence assumption and is
especially problematic in large-scale forest eco-
system studies (60, 6I), we incorporated a
spherical variogram model (62) into the residual
term e;(u). The underlying geostatistical assump-
tion was that across the world BPR is a second-
order stationary process—a common geographical
phenomenon in which neighboring points are
more similar to each other than they are to points
that are more distant (64). In our study, we found
strong evidence for this gradient (Fig. 7), indi-
cating that observations from nearby GFB plots
would be more influential than plots that are
farther away. The positive spherical semivariance
curves estimated from a large number of boot-
strapping iterations indicated that spatial de-
pendence increased as plots became closer together.

The aforementioned geostatistical nonlinear
mixed-effects model was integrated into random
forest analysis (50) by means of model selection and
estimation. In the model selection process, random
forest was employed to assess the contribution of
each of the candidate variables to the dependent
variable logP;(u), in terms of the amount of in-
crease in prediction error as one variable is per-
muted while all the others are kept constant. We
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Fig. 6. Correlation matrix and importance values of potential variables for the geospatial random
forest analysis. (A)There were a total of 15 candidate variables from three categories, namely plot at-
tributes, climatic variables, and soil factors (a detailed description is provided in Table 1). Correlation
coefficients between these variables were represented by sizes and colors of circles, and “x” marks co-
efficients not significant at o = 0.05 level. (B) Variable importance (%) values were determined by the
geospatial random forest (Materials and methods). Variables with importance values exceeding the 9%
threshold line (blue) were selected as control variables in the final geospatial random forest models. Elasticity of
substitution (coefficient), productivity (dependent variable), and species richness (key explanatory variable)
were not ranked in the variable importance chart because they were not potential covariates.

Fig. 7. Semivariance and esti-
mated spherical variogram
models (blue curves) obtained
from geospatial random forest
in relation to $. Gray circles,
semivariance; blue curves, esti-
mated spherical variogram
models. There was a general trend
that semivariance increased with
distance; spatial dependence of 6
weakened as the distance between
any two GFB plots increased. The
final spherical models had nugget =
0.8, range = 50 degrees, and sill =
1.3.To avoid identical distances, all
plot coordinates were jittered by
adding normally distributed
random noises.
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used the randomForest package (65) in R to ob-
tain importance measures for all the covariates
to guide our selection of the final variables in the
geostatistical nonlinear mixed-effects model, X ().
We selected stand basal area (G), temperature
seasonality (73), annual precipitation (C;), pre-
cipitation of the warmest quarter (Cs), potential
evapotranspiration (PET), indexed annual aridity
(IAA), and plot elevation (E) as control variables
since their importance measures were greater than
the 9 percent threshold (Fig. 6) preset to ensure

that the final variables accounted for over 60 per-
cent of the total variable importance measures.
For geospatial random forest analysis of BPR,
we first selected control variables based on the
variable importance measures derived from ran-
dom forests (50). We then evaluated the values of
elasticity of substitution (32), which are expected
to be real numbers greater than 0 and less than 1,
against the alternatives, i.e., negative BPR (H;:
0 < 0), no effect (Hy,: 6 = 0), linear (Hyz: 6 = 1),
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and convex positive BPR (Hpy: 6 > 1). We
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Table 2. Parameters of the global geospatial random forest model in 10,000 iterations of 500 randomly selected (with replacement) GFB plots.
Mean and SE of all the parameters were estimated by using bootstrapping. Effect sizes were represented by the Akaike information criterion (AIC), Bayesian
information criterion (BIC), and generalized R? (G-R?). Const, constant.

Coefficients

Loglik AlC BIC G-R? const 0 G T3 (@] @S] PET IAA E

Mean —-76141 154671 159708 0.354 3.816 0.2625243 0.014607 -0.000106 0.001604 0.001739 -0.002566 -0.000134 -0.000809
SE 0.54 110 113 0001 0.011 0.0009512 0.000039 0.000001 0.000008 0.000008 0.000009 0.000001 0.000002
Iteration

1 -756.89 153778 1588.35 0.259 4.299 0.067965 0.014971 -0.000100 0.002335 0.001528 -0.003019 -0.000185 -0.000639
2 -80146 1626.91 167749 0.281 3.043 0.167478 0.018232 -0.000061 0.000982 0.002491 -0.001916 -0.000103 -0.000904
3 -768.71 156141 1611.99 0.357 5266 0.299411 0.008571 -0.000145 0.002786 0.002798 -0.003775 -0.000258 -0.000728
4 -775.19 1574.37 162495 0.354 4.273 0.236135 0.016808 -0.000126 0.001837 0.003755 -0.003075 -0.000182 -0.000768
5 —767.66 1559.32 1609.89 0.248 2.258 0166024 0.018491 -0.000051 0.000822 0.002707 -0.001575 -0.000078 -0.000553
6 -77376 157152 1622.10 0.342 3.983 0.266962 0.018675 -0.000113 0.001372 0.001855 -0.002824 -0.000101 -0.000953
7 -770.26 1564.53 161510 0421 4691 0.353071 0.009602 -0.000127 0.002390 -0.001151 -0.003337 -0.000172 -0.000441
2911 —778.21 158043 1631.00 0.393 3476 0.187229 0.020798 -0.000069 0.001826 0.001828 -0.002695 -0.000135 -0.000943
2912 —755.35 1534.71 1585.28 0.370 2463 0.333485 0.013165 -0.000005 0.001749 0.000303 -0.002447 -0.000119 -0.000223
2913 -800.52 1625.03 1675.61 0.360 4.526 0.302214 0.021163 -0.000105 0.001860 0.001382 -0.003207 -0.000166 -0.000974
2914 -725.89 147578 1526.36 0.327 2.639 0.324987 0.013195 -0.000057 0.001322 0.000778 -0.001902 -0.000080 -0.000582
2915 -753.64 1531.28 1581.85 0.324 4.362 0.202992 0.014003 -0.000146 0.001746 0.002229 -0.002844 -0.000143 -0.000750
2916 -796.75 161750 1668.08 0.307 3544 0.244332 0.010373 -0.000118 0.002086 0.002510 -0.002667 -0.000152 -0.000650
2917 -746.88 151777 1568.34 0.348 4.427 0.290416 0.008630 -0.000107 0.002203 -0.000314 -0.002770 -0.000155 -0.000945
9997 -775.08 157417 162474 0.313 1589 0.193865 0.012525 -0.000056 -0.000589 0.000550 -0.000066 -0.000155 -0.000839
9998 -781.20 1586.40 1636.98 0.438 5453 0412750 0.014459 -0.000169 0.002346 0.002175 -0.003973 -0.000117 -0.000705
9999 —734.72 149343 154401 0.387 4.238 0.211103 0.013415 -0.000118 0.001896 0.002450 -0.002927 -0.000076 -0.000648
10000 -776.14 1576.28 1626.86 0.355 2.622 0468073 0.015632 -0.000150 -0.000093 0.001151 -0.000756 -0.000019 -0.000842

examined all the coefficients by their statistical
significance and effect sizes, using Akaike in-
formation criterion (AIC), Bayesian information
criterion (BIC), and the generalized coefficient of
determination (66).

Global analysis

For the global-scale analysis, we calibrated the
nonlinear mixed-effects model parameters (6 and
o’s) using training sets of 500 plots randomly
selected (with replacement) from the GFB global
dataset according to the bootstrap aggregating
(bagging) algorithm. We calibrated a total of
10,000 models based on the bagging samples,
using our own bootstrapping program and the
nonlinear package nlme (63) of R, to calculate
the means and standard errors of final model
estimates (Table 2). This approach overcame
computational limits by partitioning the GFB
sample into smaller subsamples to enable the
nonlinear estimation. The size of training sets
was selected based on the convergence and effect
size of the geospatial random forest models. In
pilot simulations with increasing sizes of training
sets (Fig. 8), the value of elasticity of substitution
(32) fluctuated at the start until the convergence
point at 500 plots. Generalized R? values declined
as the size of training sets increased from 0 to
350 plots, and stabilized at around 0.35 as train-
ing set size increased further. Accordingly, we
selected 500 as the size of the training sets for
the final geospatial random forest analysis. Based
on the estimated parameters of the global model
(Table 2), we analyzed the effect of relative species
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richness on global forest productivity with a sen-
sitivity analysis by keeping all the other variables
constant at their sample means for each ecoregion.

Mapping BPR across global
forest ecosystems

For mapping purposes, we first estimated the
current extent of global forests in several steps.
We aggregated the “treecover2000” and “loss”
data (67) from 30 m pixels to 30 arc-second pixels
(~1km) by calculating the respective means. The
result was ~1 km pixels showing the percentage
forest cover for the year 2000 and the percentage
of this forest cover lost between 2000 and 2013,
respectively. The aggregated forest cover loss was
multiplied by the aggregated forest cover to pro-
duce a single raster value for each ~1 km pixel
representing a percentage forest lost between
2000 and 2013. This multiplication was neces-
sary since the initial loss values were relative to
initial forest cover. Similarly, we estimated the
percentage forest cover gain by aggregating the
forest “gain” data (67) from 30 m to 30 arc-
seconds while taking a mean. Then, this gain
layer was multiplied by 1 minus the aggregated
forest cover from the first step to produce a
single value for each ~1 km pixel that signifies
percentage forest gain from 2000-2013. This
multiplication ensured that the gain could only
occur in areas that were not already forested.
Finally, the percentage forest cover for 2013 was
computed by taking the aggregated data from
the first step (year 2000) and subtracting the
computed loss and adding the computed gain.
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We mapped productivity P and elasticity of
substitution (32) across the estimated current
extent of global forests, here defined as areas
with 50 percent or more forest cover. Because
GFB ground plots represent approximately 40
percent of the forested areas, we used universal
kriging (62) to estimate P and 6 for the areas
with no GFB sample coverage. The universal
kriging models consisted of covariates speci-
fied in Fig. 6B and a spherical variogram model
with parameters (i.e., nugget, range, and sill)
specified in Fig. 7. We obtained the best linear
unbiased estimators of P and 6 and their stan-
dard error in relation to S across the current
global forest extent with the gstat package of R
(68). By combining 6 estimated from geospatial
random forest and universal kriging, we produced
the spatially continuous maps of the elasticity of
substitution (Fig. 3B) and forest productivity
(fig. S1) at a global scale. The effect sizes of the
best linear unbiased estimator of 6 (in terms of
standard error and generalized R?) are shown
in Fig. 5. We further estimated percentage and
absolute decline in worldwide forest produc-
tivity under two scenarios of loss in tree species
richness— low (10% loss) and high (99% loss).
These levels represent the productivity decline
(in both percentage and absolute terms) if local
species richness across the global forest extent
would decrease to 90 and 1 percent of the cur-
rent values, respectively. The percentage decline
was calculated based on the general BPR model
(Eq. 1) and estimated worldwide spatially explicit
values of the elasticity of substitution (Fig. 3B).
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Fig. 8. Effect of the size of training sets used
in the geospatial random forest on estimated
elasticity of substitution (6) and generalized R?
in relation to $. Mean (solid line) and SE band (green
area) were estimated with 100 randomly selected
(with replacement) training sets for each of the 20
size values (between 50 and 1000 GFB plots, with
an increment of 50).

The absolute decline was the product of the world-
wide estimates of primary forest productivity
(fig. S1) and the standardized percentage decline
at the two levels of biodiversity loss (Fig. 4A).

Economic analysis

Estimates of the economic value-added from
forests employ a range of methods. One promi-
nent recent global valuation of ecosystem services
(69) valued global forest production [in terms of
‘raw materials’ (including timber, fiber, biomass
fuels, and fuelwood and charcoal] provided by
forests (table S1) (69) in 2011 at US$ 649 billion
(6.49 x 10", in constant 2007 dollars). Using an
alternative method, the UN FAO (25, 26) esti-
mates gross value-added in the formal forestry
sector, a measure of the contribution of forestry,
wood industry, and pulp and paper industry to
the world’s economy, at US$606 billion (6.06 x
10", in constant 2011 dollars). Because these two
reasonably comparable values are directly im-
pacted by and proportional to forest productivity,
we used them as bounds on our coarse estimate
of the global economic value of commercial forest
productivity, converted to constant 2015 US$
based on the US consumer price indices (70, 71).
As indicated by our global-scale analyses (Fig. 4A),
a 10 percent decrease of tree species richness
distributed evenly across the world (from 100%
to 90%) would cause a 2.1 to 3.1 percent decline
in productivity, which would equate to US$13-
23 billion per year (constant 2015 US$). For the
assessment of the value of biodiversity in main-
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taining forest productivity, a drop in species
richness from the current level to one species
would lead to 26-66% reduction in commercial
forest productivity in the biomes that contribute
substantially to global commercial forestry (fig.
S4), equivalent to 166-490 billion US$ per year
(1.66 x 10™ t0 4.90 x 10", constant 2015 US$, cal-
culated by multiplying the foregoing economic
value-added from FAO and the other study by 26
and 66%, respectively.) Therefore, we estimated
that the economic value of biodiversity in main-
taining commercial forest productivity worldwide
would be 166 billion to 490 billion US$ per year.

We held the total number of trees, global forest
area and stocking, and other factors constant to
estimate the value of productivity loss solely due
to a decline in tree species richness. As such, these
estimates did not include the value of land con-
verted from forest and losses due to associated
fauna and flora decline or forest habitat reduction.
This estimate only reflects the value of biodiver-
sity in maintaining commercial forest productiv-
ity that contributes directly to forestry, wood
industry, and pulp and paper industry, and does
not account for other values of biodiversity, in-
cluding potential values for climate regulation,
habitat, water flow regulation, genetic resources,
etc. The total global value of biodiversity could ex-
ceed this estimate by orders of magnitudes (41, 42).
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