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A B S T R A C T

Functional diversity informs about biodiversity-ecosystem functioning relationships. The intraspecific compo-
nent of functional diversity (i.e. the phenotypic space of each species) depicts individual differences in the
resource use and fitness among conspecifics, and gives valuable information about the functional similarity
(competition) or dissimilarity (complementarity) of coexisting species. Here, we quantified trait differences
within tree species along local diversity gradients to shed light on the role that this intraspecific variability exerts
on functional complementarity of tree species. We measured architectural traits in 5,036 individuals and leaf
traits in 1,403 individuals from nine dominant tree species, surveyed in 92 plots located in three major European
forest types (Mediterranean, temperate and boreal forests). In each forest type, plots were positioned along a
canopy richness gradient, with every study species present in different species richness levels, including
monocultures. Our results showed that the relative magnitude of intraspecific trait variability to community-
level variability is high in these forests. At the species level, we found adjustments of species leaf traits (mean
shifts) in response to neighbouring trees, suggesting the existence of processes that limit niche overlap. We also
found higher variability in architectural traits of conspecific individuals in more diverse canopies, suggesting
greater niche packing and a more efficient use of available space as the number of species in the canopy in-
creases. Altogether, our results support the hypothesis that differential responses of individuals within a species
promote species complementarity, suggesting that biodiversity-ecosystem functioning relationships cannot be
properly estimated without accounting for the intraspecific level of functional variation.

1. Introduction

An increasing body of work shows the positive effect that plant
diversity exerts on different ecosystem functions and services, ac-
counted either individually (e.g. productivity, stability or resilience
against pests or pathogen outbreaks) (Allan et al., 2013; Balvanera
et al., 2006; Cardinale et al., 2012) or together (the so-called ‘multi-
functionality’) (Gamfeldt et al., 2008; Lefcheck et al., 2015; van der Plas
et al., 2016). For individual ecosystem functions, two additive me-
chanisms have been identified supporting this positive relationship:
niche complementarity and selection effects (Loreau and Hector, 2001;
Turnbull et al., 2013). The former assumes that diverse communities
comprise species with different resource use (i.e. differences in resource

requirements or spatial/temporal distribution); the latter assumes that
competition leads high-yielding species to dominate in mixtures.

Including functional diversity, in addition to the number of species,
gives further information about the biodiversity effect on ecosystem
functioning as it can better capture species interactions in a community
(Cadotte, 2017; Cadotte et al., 2011; Ebeling et al., 2014). Traits de-
termine how individuals use resources from their environment (McGill
et al., 2006), and provide information about species niche and fitness
differences (Kraft et al., 2015). Species trait differences are therefore
directly linked to the complementarity and competitive ability of co-
existing species (Carroll et al., 2011; Loreau et al., 2012), key compo-
nents of biodiversity that influence how an ecosystem operates or
functions (Tilman, 2001). Since approximately 25% of total estimated
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trait variation in plant communities worldwide is found within species
(Albert et al., 2010a, b; Siefert et al., 2015), intraspecific variability
should not be ignored when quantifying biodiversity effects on eco-
system functioning (Aschehoug and Callaway, 2014; Ashton et al.,
2010; Zhu et al., 2015). Accordingly, an increasing number of studies is
revealing the importance of intraspecific variability for different eco-
logical questions, including functioning of plant communities
(Crutsinger et al., 2006; Lecerf and Chauvet, 2008), community as-
sembly (Jung et al., 2010; Siefert, 2012), species distribution fore-
casting (Cochrane et al., 2015; Valladares et al., 2014), and mechanisms
ruling species interactions and coexistence (Lichstein et al., 2007;
Roscher et al., 2015).

Traits are measured at the individual level, and the distribution of
trait values within a species identifies its functional trait space. Hence,
considering trait variability between and within species entails that the
functional space can be occupied continuously by all the individuals
making up the community. Approaches based on species mean traits
underestimate species interactions (by ignoring functional overlaps)
and the utilisation of available resources (de Bello et al., 2013; Violle
et al., 2012). The functional overlap among coexisting species reveals
their similarity, i.e. the functional space they share (Violle et al., 2012).
Thus, low trait overlaps in rich communities would support that species
exploit different niches and are thus complementary in their resource
use. Meanwhile, large overlaps would imply functional redundancy
among coexisting species. Despite the large effort required to quantify
and collate trait variation within species, several studies have tackled
the relationship between species richness and trait distributions and
overlaps in order to elucidate mechanisms that underpin the structure
of natural communities (Bastias et al., 2017; Kumordzi et al., 2015; Le
Bagousse-Pinguet et al., 2014). However, results are contrasting and
there is no clear evidence of similar species-specific responses (trait
adjustments) to changes in species richness and composition. Insights
from biodiversity experiments (carried out primarily with herbaceous
species) have revealed a potential role of intraspecific variability for
fostering species complementarity (Ashton et al., 2010; Mitchell and
Bakker, 2016; Zuppinger-Dingley et al., 2014; Zhu et al., 2015). For
instance, Zhu et al. (2015) assessed that 64% of the total net biodi-
versity effect measured on light capture compared to monocultures in
wheat and maize intercrops was due to species plasticity.

Here, we have quantified trait variation within tree species along
diversity gradients of canopy trees in mature, European forests to ad-
dress whether intraspecific trait variability enhances species com-
plementarity. We have compared the intraspecific trait variability
(hereafter ITV) of trees growing in pure vs. mixed stands in three
contrasting forest types: a continental-Mediterranean, a mountainous
mixed temperate and a boreal forest. First, we have evaluated the
magnitude of ITV at the community level relative to the variability
among species (intErspecific Trait Variation, hereafter ETV) across the
forest types, and analysed its relationship with species richness of the
canopy tree layer. We further analysed how this component of the
variability at the community level varies with species richness.

Subsequently, we analysed the relationship between species rich-
ness and ITV at the species level, i.e. trait mean and variance among
conspecific individuals, searching for species-specific responses to the
diversity gradient. Given the contrasting results found in previous stu-
dies of how species richness affects ITV (Bastias et al., 2017; Kumordzi
et al., 2015; Le Bagousse-Pinguet et al., 2014; Siefert et al., 2015), we
posit three alternative hypotheses for this relationship (Fig. 1): i) spe-
cies richness and ITV are not correlated, suggesting either full com-
plementarity among species or non-saturated communities; ii) species
richness and ITV are negatively correlated, implying a reduced ITV due
to resource partitioning and avoidance of niche overlap with increasing
species richness (McGill et al., 2006; Tilman, 1982); iii) species richness
and ITV are positively correlated, entailing higher temporal or spatial
heterogeneity in the community that provides new opportunities (new
niche availability) and wanes competition among individuals (Stein

et al., 2014). This positive correlation might arise either by an incre-
ment of intraspecific trait variability at the community level (changes in
trait variance among conspecifics in two different communities), or by
trait mean shift of a species.

2. Methods

2.1. Study sites

The three study sites belong to a network of plots established for the
European project FunDivEUROPE (Functional significance of forest bio-
diversity; www.fundiveurope.eu), which comprise some of the major
European forest types (Baeten et al., 2013). In particular, this study was
located in a continental-Mediterranean mixed forest in the Alto Tajo
Natural Park (Spain), a mountainous beech forest in Râşca (Carpathian
Mountains, Romania) and a boreal forest in North Karelia (Finland).
Hereafter, we refer to them as ‘Mediterranean’, ‘temperate’ and ‘boreal’,
respectively (Table 1).

In each site, plots (30 x 30m) were established following a diversity
gradient of regional dominant tree species in different combinations
(replicated at least twice), ranging the species richness (SR) of the ca-
nopy from 1 to 3 in Finland, and from 1 to 4 in Romania and Spain.
Every dominant species was present in all species richness levels (see in
Appendix A, Table A.1 the detailed species combination design). The
total number of sampled plots were 92 and the tree species were Pinus
nigra Arnold, Pinus sylvestris L., Quercus faginea Lam. and Quercus ilex L.
in the Mediterranean forest with 36 plots in total; Abies alba Mill., Acer
pseudoplatanus L., Fagus sylvatica L. and Picea abies [L.] Karst. in the
temperate forest; and Betula pendula Roth., Picea abies [L.] Karst. and
Pinus sylvestris L. in the boreal forest, both with 28 plots. Criteria for
plot selection are explained in detail in Baeten et al. (2013) and relied
on two main principles: 1) mixed plots had high evenness, i.e. species
had similar relative abundances; 2) variation of environmental condi-
tions among plots within a region (e.g. soil, topography) was mini-
mised, reducing the covariation between environmental gradients and
species richness.

2.2. Study traits, sampling and measuring

We considered traits at the leaf and at the whole-plant levels. At the
leaf level, we chose two morphological leaf traits associated with re-
source acquisition-conservation trade-off (Wright et al., 2004), namely
specific leaf area (SLA, the area of an individual fresh leaf divided by its
dry mass) and leaf dry matter content (LDMC, the oven-dry mass of an
individual leaf divided by its water-saturated fresh mass). Both traits
are variable and sensitive to variations in nutrient and water supply
(LDMC and SLA) and light conditions (SLA), constituting main factors
of adjustment in whole-plant response. Hence, variation in resource
availability drives leaf traits in a way that is generally reflected in es-
tablishment of individuals with acquisitive traits (high SLA and low
LDMC) in nutrient rich environments and conservative traits (low SLA
and high LDMC) in nutrient poor environments (Wilson et al., 1999;
Wright et al., 2004).

We harvested leaves from ten individuals per species (dbh> 10 cm)
in each plot in the boreal and Mediterranean forests, and from at least
six (monocultures) and three (mixed forest) trees in the temperate
forest, due to the canopy height and difficulty sampling. We selected
randomly the surveyed trees to maximise trait variability within spe-
cies. We cut two branches at the most contrasting crown positions from
each of the target trees, one located at the top and facing south, and the
other at the bottom of the crown and facing north, and we collected five
leaves/needles in each branch. Final sample size totalled 13,990 leaves
from 1,403 trees (Appendix A, Table A.2). Leaf collection, storage,
processing and trait measurement followed Garnier et al. (2001) and
Pérez-Harguindeguy et al. (2013). We weighed rehydrated leaves,
scanned them and measured their area using WinFOLIA and

R. Benavides et al. Perspectives in Plant Ecology, Evolution and Systematics 36 (2019) 24–32

25

http://www.fundiveurope.eu


WinSEEDLE for broadleaves and needles, respectively (Regent Instru-
ments Inc. Canada). Finally, they were oven-dried at 60 °C for 72 h and
weighed for dry mass.

At the whole-plant level, we considered two traits from every single
tree within the study plots (5,036 adult trees in total), namely tree
height (H) and crown projection area (CP). We calculated crown pro-
jection area assuming elliptical areas, using the projection of two per-
pendicular diameters (the longest one and its perpendicular) of the
crown. Height and crown size can be considered individual perfor-
mance measures (Garnier et al., 2016); but both variables represent the
standing phenotypic variation in a tree community and the relative
competitive ability of each individual for coexistence (Siefert et al.,
2015). Moreover, our experimental design imply negligible ontogenetic
differences at the plot level among individuals because our study sites

comprised mature forests at late- to mid-stem exclusion stages with
scattered individuals belonging to immature cohorts (Baeten et al.,
2013). A summary of sample sizes per trait, species and forest type is
shown in Table A.2 (Appendix A in Supporting information).

2.3. Statistical analyses

2.3.1. Relative extent of intra- and interspecific trait variability on total
community variability

We followed the approach developed by de Bello et al. (2011) to
evaluate the relative contribution of ITV and ETV on total trait varia-
bility in every plot. This approach is based on the partitioning of total
community (plot) trait variance into within- (ITV) and among-species
(ETV) components, which is equivalent to the decomposition of the

Fig. 1. Alternative hypotheses for the relationship between intraspecific trait variability (ITV) and species richness (SR) in a forest community. The comparison of a
species trait distribution between conspecific (monocultures) vs. heterospecific neighbours (mixed stands) is addressed in terms of mean trait value and trait variance
(assessed as coefficient of variation -CV-). 1) Null relationship, ITV does not correlate with species richness (neither its mean value nor the variance); 2) ITV decreases
with species richness, i.e. variance diminishes around the optimal value; or 3) ITV increases with species richness either by local variance increment or by trait mean
shift and the ensuing increment of the overall phenotypic space at a larger scale.

Table 1
Brief description of the study sites, species and environmental conditions.

North Karelia, Finland
(boreal)

Carpathian mountains, Romania
(temperate)

Alto Tajo Natural Park,
Spain
(continental-Mediterranean)

Coordinates 62.4 °N–29.4 °E 47.3 °N–25.5 °E 40.7 °N–1.9 °W
Dominant species Betula pendula

Picea abies
Pinus sylvestris

Abies alba
Acer pseudoplatanus
Fagus sylvatica
Picea abies

Pinus nigra
Pinus sylvestris
Quercus faginea
Quercus ilex

Annual mean T (ºC)* 2.1 (0.3) 5.5 (0.5) 9.7 (0.6)
Annual mean P (mm)* 631.8 (5.9) 691.1 (24.9) 537.4 (27.3)
Elevation range (m) 87–233 655–1062 960–1404
Soils Podzols and glacial tills, histosols on peatlands Tertiary sandstone and clay, loamy sediments Calcareous, reddish Terra rossa
Main forest types (EEA-code)* Boreal Carpathian mountainous beech forest Coniferous and broadleaf Mediterranean forests
Species richness gradient 1-3 1-4 1-4
Number of plots 28 28 36
Plots per richness level 11/14/3 8/10/7/3 12/15/6/3

* T= temperature, P= precipitation, figures in brackets are the standard deviations; EEA: European Environmental Agency (source: EEA Technical Report No 9/
2006; https://eea.europa.eu).
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dissimilarity between pairs of observations, i.e. the quadratic entropy
diversity (Rao index of functional diversity). Hence, the relative con-
tribution of ITV in community i (ITVrel, Eq. (1)) is the ratio of the
variance within species j (ITVabs) over the total community variance,
which is the sum of abundance-weighted ITV and ETV. Similarly the
relative contribution of ETVrel in community i is the ratio of the var-
iance among the species j (ETVabs) over the total community variance
(Eq. (2)),
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where Nsp is the number of j species and Nind the number of k in-
dividuals sampled in a community (plot) i, pij is the relative abundance
of species j in community i, Tijk is the trait value of the individual k of
the species j in community i, Tij the mean trait value of the species j in
community i, and Ti the mean trait value in community i. We used the
relative species basal area in a plot (i.e. ratio of the sum of cross-sec-
tional area of stems at breast height of each species over the sum of all
species present in a plot) as the relative abundance. For foliar traits, we
used SLA and LDMC per tree as the average of the ten harvested leaves.
We chose the mean value among the most dissimilar leaves in each tree
(collected from the two most light-contrasting locations in the crown)
instead of leaves exposed to full sunlight, frequently used (Pérez-
Harguindeguy et al., 2013), to have a fairer comparison across in-
dividuals as our sample included non-dominant individuals with no
sun-exposed leaves. Note that ITV or ETV is used for intraspecific and
interspecific trait variability in general terms, ITVabs and ETVabs for the
absolute value of variability (variance expressed as squared units) as-
sessed for each component, and ITVrel and ETVrel for the relative con-
tribution (%) of each component to the total variability at the com-
munity level.

We also evaluated the trait overlap at plot level using the R function
‘trova’ (de Bello et al., 2013). It assesses the overlapping area between
two trait distribution curves with kernel density estimators, not as-
suming any particular shape of the trait distribution (Mouillot et al.,
2005).

2.3.2. Relationship between intraspecific trait variability and species
richness

We checked the relationship between species richness (SR) and the
ITV assessed at the community (plot) level (ITVabs) (Eq. (3)). Then, we
scaled down to the species level and analysed the relationship between
species richness (SR) and trait mean (T) of conspecific individuals (Eq.
(4)), and between species richness (SR) and trait variance at plot level
per species, assessed as the coefficient of variation (CV) (100 ×
(standard deviation/mean)) (Eq. (5)). We fitted linear mixed models
(LMMs) for the different response variables, which were log-trans-
formed, as appropriate, to meet the assumptions of inferential statistics
(normally distributed errors).

ITVabs ˜ TF*SR + (1|combination) + ε (3)

T ˜ Sp*SR + HCanopy+ TD+ BA+ BAcon+ (1|combination/plot) + ε
(4)

CV ˜ Sp*SR+ TD+ BA+ BAcon + (1|combination) + ε (5)

Analysing ITV at the community level (ITVabs), we included the

interaction between type of forest (TF) and species richness (SR) for
analyses as fixed effect, allowing different responses to species richness
among forest types. Analysing species trait responses, we included the
interaction between species identity (Sp) and species richness, allowing
different species responses for analyses at the species level. We ran
models for each forest type separately, avoiding triple interactions and
complex outcome interpretations. In addition, we included four cov-
ariates that describe the structure of the stand and account for any
within-region variability due to historical management: i) tree density
or number of adult trees in the plot (TD); i) plot basal area (BA), i.e. the
sum of the basal area of all trees within a plot (m2); iii) proportion of
basal area considering only conspecific individuals (BAcon); and iv) the
hierarchical position of each tree in the canopy (HCanopy) with a visual
estimation into: 1) predominant; 2) dominant, 3) co-dominant; 4)
dominated; 5) completely suppressed (Kraft, 1884). The latter was not
considered when tree height was analysed, as they were highly corre-
lated. Regarding the random structure, combination (i.e. species present
in a plot) accounted for the variance among observations derived from
specific species interactions in a community (see detailed species
combinations in Table A.1, Appendix A), and plot for the expected
correlation among trait observations within plots.

We assessed the significance for each fixed effect by stepwise
backward model selection, in which models of increasing complexity
were compared to simpler ones using likelihood ratio (L-ratio) tests
(Zuur et al., 2009), and we selected our optimal models following the
principle of parsimony. For the analyses at the species level, we always
retained the species identity and species richness (Sp and SR) in the
models, to derive effect sizes for all models, but we removed non-sig-
nificant covariates. Model parameters were estimated using a Restricted
Maximum Likelihood approach, while Maximum Likelihood estimates
were used when comparing models with L-ratio tests. LMMs were
performed using the package ‘lme4’ (Bates et al., 2014) in R (R Core
Team, version 3.3.1, 2016).

To compare the sole effect of species richness on study traits, we
used the mean predicted values from the optimal LMMs of each trait at
both extremes of the species richness gradient to assess the d effect size
(Cohen, 1988), i.e. the mean difference standardised by the pooled
standard deviation of the two groups. We combined firstly the effect
sizes by forest type, and secondly we pooled all to provide the grand
mean effect size using fixed-effect models (Hedges and Vevea, 1998).
We represented these effect sizes using the package ‘metafor’ in R
(Viechtbauer, 2010).

3. Results

3.1. Relative extent of intraspecific variability at the community level

Comparing the relative extent of intra- vs. interspecific trait varia-
bility (ITVrel vs. ETVrel) showed that the contribution of ITVrel was
substantial in the three studied forests (Fig. 2), although the magnitude
depended on the trait. Specifically, architectural trait variability (tree
height and crown projection area) remained mainly within species (i.e.
ITVrel was always over 50%); while for leaf traits, the contribution of
ITVrel was smaller, especially for SLA with contributions below 50%.

Regarding patterns along the species richness gradient, we found
some expected trends. All the variability found in monocultures was
due to ITV by definition. Gradually, as the species richness increased,
the variability at the community level (absolute values) increased, due
to increments in both, inter- and intraspecific components (Fig. 3; Ap-
pendix B, Fig. B.1).These results are in accordance with Kumordzi et al.
(2015) (see their Supporting information) who evidenced a mathema-
tical correlation between species richness and both components of the
community trait variance. However, we found that the relative im-
portance of ITVrel decreased with species richness for both leaf traits,
while the relationship depended on the forest type for architectural
traits (Fig. 2). Finally, we also studied the relationship between SR and
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the species overlap for the four study traits, obtaining no significant
effect (see SI; Appendix C, Fig. C.1).

3.2. Species trait patterns in relation to species richness

Focusing on species-specific responses, we analysed the relationship
between species richness (SR) and both mean trait values of conspecific
individuals and trait variability at community (plot) level. The analyses
showed divergent trends for leaf traits among forest types, and similar
for architectural ones (Fig. 4; Table 2).

In the temperate forest, we found a clear positive relationship be-
tween species richness and SLA, and a negative relationship with
LDMC. In the Mediterranean forest, species richness was positively
correlated with LDMC, while in the boreal forest no significant pattern
was found (Fig. 4a; Table 2; SI Appendix B Fig. B.2). Regarding the
architectural traits, values of tree height and crown area did not show
clear relationships with species richness, with species-specific responses
(significant interaction between species richness and species) in the

boreal and Mediterranean forests. However, trees were taller as the
proportion of conspecific individuals (in basal area) increased, and as
tree density decreased in the three study cases (Table 2; Fig. B.2).
Moreover, trees generally had larger crown in less dense communities
(Table 2).

The relationship between species richness and species trait varia-
bility at plot level (CV) was clearer in architectural than in leaf traits
(Table 2). Despite the lower sample size, which implied wider con-
fidence intervals (Fig. 4b), conspecific individuals in richer commu-
nities were more variable than in monocultures, at least in the boreal
and temperate forests; while it was species-specific in the Mediterra-
nean forest (Fig. 4b; Table 2; Fig. B.2).

4. Discussion

We explored two main questions regarding the relevance of in-
traspecific trait variability of tree species in European forests. First, we
have observed an important contribution of ITVrel to the total

Fig. 2. Mean relative contribution of in-
traspecific (dark grey) and interspecific (light
grey) variability to the community-level func-
tional trait variability (in %) assessed for the
study traits (SLA: specific leaf area; LDMC: leaf
dry matter content; H: tree height; CP: crown
projection area). Each bar represents the
average of communities (plots) with the same
species richness level (SR) within each forest
type.

Fig. 3. Relationship between predicted ITV at
community level (ITVabs) for the four study
traits (SLA: specific leaf area; LDMC: leaf dry
matter content; H: tree height; CP: crown pro-
jection area) and species richness (SR) with
95% confidence intervals for fixed effects. R2

marginal and conditional of the models are
shown, and significant SR and/or forest type
(FT) effects are indicated (• p-value ≤ 0.1, * p-
value≤ 0.05; ** p-value≤0.01; *** p-value≤
0.001). Squares are predicted values for the
boreal forest, triangles for the temperate forest,
and circles for the Mediterranean forest.

R. Benavides et al. Perspectives in Plant Ecology, Evolution and Systematics 36 (2019) 24–32

28



variability at the community level for all the study traits, supporting the
need for its incorporation in trait-based approaches to community
ecology. Second, we have also found a slight adjustment of species traits
in responses to the species richness of the neighbours that may promote
species complementarity, although it varied among traits, species and
forest types. Our results generally supported our third proposed

hypothesis that trait variability increases in more diverse European
forest communities, and that this increment is driven either by in-
creased variability of conspecific individuals with more variable phe-
notypes or by shifts of mean trait values at a larger scale.

Fig. 4. Standardised effect sizes of species richness on: a) individual trait values; and b) trait variability at community (plot) level expressed as coefficient of variation
-CV- of the four study traits (SLA: specific leaf area; LDMC: leaf dry matter content; H: tree height; CP: crown projection area), using linear mixed models. Error bars
represent 95% confidence intervals.

Table 2
Optimal linear mixed models for individual trait values and trait variability at plot level (CV, coefficient of variations) as response variables. The columns show the
χ2 values from likelihood-ratio tests and the direction of each explanatory term selected.

Sp SR Sp*SR Hcanopy TD BA BAcon n ΔAIC R2 marginal/conditional

Boreal SLA 1514.14*** 0.34 (+) 37.23*** 460 5.73 0.972 0.978
LDMC 243.05*** 0.49 (-) 8.3 ** (-) 3.44 • 460 5.7 0.485 0.638
H 233.57*** 0.63 32.32*** (-) 17.24*** (+) 23.42*** 1824 1.8 0.407 0.564
CP 16.57*** 0.51 (-) 874.41*** (-) 12.25*** (-) 8.63*** 1824 1.4 0.646 0.574

Temperate SLA 484.95** 5.24* (+) 45.96*** 226 2.97 0.921 0.929
LDMC 154.3*** 7.65** 224 6.65 0.537 0.571
H 59.79*** 0.17 (-) 20.27*** (+) 9.34** (+) 16.37*** 1227 2.9 0.199 0.335
CP 118.45*** 0.04 (-) 672.34*** (-) 3.81 • 1205 7.7 0.433 0.551

Mediterranean SLA 1901.6*** 0.55 10.48* (+) 33.58*** (+) 2.78 • 700 3.76 0.947 0.959
LDMC 682.08*** 4.78* 686 10.5 0.644 0.729
H 293.35*** 3.10 • 28.07*** (-) 6.71** (+) 24.18*** (+) 28.57*** 1951 0 0.522 0.679
CP 107.81*** 0.63 10.79* (-) 1084.22*** (-) 11.21 *** 1944 9.2 0.421 0.665

Boreal CV SLA 102.36*** 0 nc 48 2.72 0.882 0.895
CVLDMC 110.24*** 3.5 • 4.82 • nc (-) 4.28* 48 3.22 0.905 0.905
CV H 47.14*** 3.33 • nc 48 3.6 0.622 0.625
CV CP 6.82*** 4.32* nc (-) 5.28* 48 5.9 0.236 0.311

Temperate CV SLA 16.44*** 0.18 nc 61 7.55 0.218 0.304
CV LDMC 40.40*** 2.32 nc 61 5.31 0.478 0.501
CV H 19.39*** 5.60* nc 61 3.94 0.363 0.456
CV CP 17.73*** 1.36 nc 60 10.13 0.235 0.296

Mediterranean CV SLA 64.44*** 2.58 9.58* nc (+) 9.57** 72 3.49 0.636 0.666
CV LDMC 75.46*** 0.05 nc 71 2.71 0.639 0.728
CV H 10.93* 0.16 nc (-) 5.17* 72 4.65 0.174 0.311
CV CP 23.91*** 0.12 8.04* nc (-)12.8*** 72 3.52 0.378 0.58

SLA: specific leaf area; LDMC: leaf dry matter content; H: tree height; CP: crown projection area; Sp: species; SR: species richness; HCanopy: hierarchical position in
the canopy; TD: tree density in the plot; BA: basal area of the plot; BAcon: proportion of BA of conspecific individuals; n: sample size; ΔAIC: difference in AIC referred
to the saturated model; nc: not considered in the saturated model. Significance: •10%, *5%, **1%, ***0.1%.
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4.1. Relative extent of intraspecific trait variability in European forests

Trait variation within and among species may reach comparable
magnitudes (Auger and Shipley, 2013; Fajardo and Piper, 2011),
especially in species-poor communities where ITV contribution to
community-level trait variability is expected to be larger than in highly
diverse communities (Siefert et al., 2015). Our study forest commu-
nities, which are examples of the most representative and extensive
types of European forests, are poor in terms of tree species richness
compared to forest ecosystems in other regions. Our findings showed
that ITVrel comprises a large amount of the community-level trait
variability (often over 50%), supporting our expectations. However, the
magnitude depended on the trait considered, in agreement with pre-
vious studies (Auger and Shipley, 2013; Siefert et al., 2015). Tree height
and crown size variability mainly encompassed dissimilarities at the
species level (higher ITVrel than ETVrel). This outcome is consistent with
the fact that plants are modular organisms so whole-plant traits can
accumulate more variability according to the local conditions where
each module develops (Herrera, 2009; Marks, 2007; Siefert et al., 2015)
than organ-level traits. Moreover, asymmetric competition for light
enhances trait variability among individuals, regardless of the species,
which accumulates throughout the lifespan of the plant.

Crucially, we found contrasting results for the two leaf traits.
Variability in SLA was greater among species than within, and the
opposite was true for LDMC. This finding can be explained by the fact
that both traits are influenced by soil fertility and moisture but SLA is
more influenced than LDMC by light conditions, which can vary en-
ormously within a crown (Pérez-Harguindeguy et al., 2013; Wilson
et al., 1999). Several studies have documented large variability in SLA
within individuals conferring this variation on self-shading effects and
complex interactions between soil fertility and light conditions (Reich,
2014; Wilson et al., 1999). However, in this study we omitted this
component of the variability (within individuals), as we used averaged
leaf traits per individual, and most of the remaining SLA variability was
found between, instead of within, species. Contrasting variability pat-
terns between these two traits are not new (Hulshof and Swenson,
2010; Roche et al., 2004) further supporting that the relative im-
portance of ITV to ETV rely on the trait considered, species identity and
communities.

4.2. Relationship between species richness and species trait patterns

We found that species richness correlated with ITV at the species
level, although the strength and sign of the relationship depended on
the study trait and forest type. Previous studies with grasslands also
detected diversity-induced differences in species trait means (Gubsch
et al., 2011; Roscher et al., 2015; Zuppinger-Dingley et al., 2014). Here,
we found smaller conspecific individuals and with more variable ar-
chitectures in richer communities (coefficient of variation of height and
crown size at plot scale), which agrees with studies that report com-
petition release, increased niche packing and a more efficient use of
aboveground space in mixed stands compared to monocultures (Jucker
et al., 2015; Pretzsch, 2014; Swenson and Weiser, 2014). In particular,
Jucker et al. (2015), working in the same study sites, found greater
vertical stratification and higher species crown variability in mixed
stands compared to monocultures.

Leaf trait means also correlated with species richness but the di-
rection varied among forest types. In the temperate forest, individuals
had higher SLA and lower LDMC in more diverse communities as ty-
pically shown in resource-rich environments (Wright et al., 2004). In-
creasing nutrient or water availability in soils of mixed vs. monospecific
tree stands has often been postulated based on positive diversity effects
on litter decomposition and nutrient cycling, and based on below-
ground resource use complementarity through niche partitioning and/
or facilitation (Ashton et al., 2010; Richards et al., 2010; Rothe and
Binkley, 2001). On the contrary, individuals in more diverse stands in

the boreal and Mediterranean forests had leaves with higher LDMC than
in monocultures, suggesting more stressful conditions for individuals in
high diverse plots submitted to higher interspecific than intraspecific
competition. Although we have no fitness measurements to confirm this
assumption, previous studies in our boreal and Mediterranean study
sites indicated that stressful conditions (e.g. droughts) boost competi-
tion for belowground resources in more diverse communities (Grossiord
et al., 2014a,b; Jucker et al., 2014).

4.3. Implications for biodiversity effect

We have shown that plant individuals adjust some of their traits,
and therefore the species functional space, to the biotic environment
(see also Aschehoug and Callaway, 2014; Berg and Ellers, 2010;
Callaway, 2003), namely to the richness of species. This is in agreement
with results derived from biodiversity experiments (Gubsch et al., 2011;
Lipowsky et al., 2015; Mitchell and Bakker, 2016; Roscher et al., 2015;
Zuppinger-Dingley et al., 2014), which negates our first hypothesis
(Fig. 1). Moreover, we did not detect a pervasive shrinking of species
trait breadths (variability at the community level) in mixed forests
compared to monocultures, nor an increasing trait overlap with in-
creasing species richness (see Appendix C, Fig. C.3), as would be pre-
dicted by the niche-based theory hypothesises – thus rejecting our
second hypothesis- (Tilman, 1982). On the contrary, our results support
the third hypothesis, as we found some increments of trait variability
and trait mean shifts as species richness increased. Moreover, we found
that species overlaps remained steady at increasing richness suggesting
both highly dissimilar or barely redundant species, as expected in poor-
species communities (Valladares et al., 2015), and an expansion and
packing of the functional space with increasing diversity in accordance
to studies conducted in other forest communities (Pretzsch, 2014;
Swenson and Weiser, 2014).

Our results suggest that intraspecific trait variability, no matter the
origin (either phenotypic plasticity or genetic diversity), provides spe-
cies with the flexibility to avoid competition with coexisting species
promoting complementarity instead (Aschehoug and Callaway, 2014;
Ashton et al., 2010). Responses at the individual level to the presence of
heterospecifics reduce functional similarity, favouring complementarity
and resulting biodiversity effect on ecosystem functioning through two
complementary ways. Firstly, shifts of leaf trait means along richness
gradients would imply species short- and mid-term responses to canopy
diversity, similar to the trait shifts found within herbaceous experi-
ments (Gubsch et al., 2011; Roscher et al., 2015). Secondly, assuming
the modular nature of plants, these differential short-term responses
among conspecifics would imply cumulative variation, resulting in
more variable phenotypes (architectures) in the long-term (Herrera,
2009). Furthermore, individuals with contrasting phenotypes create
larger spatial heterogeneity, which in turn promotes associated biodi-
versity due to greater habitat availability (Stein et al., 2014). A lim-
itation of our study is that we cannot fully remove the actual effect of
historical management on these long-term responses, a common lim-
itation when surveying long-lived organisms. However, results from
biodiversity experiments in grasslands have reported similar cumula-
tive phenotypic variability and species complementarity, augmenting
the biodiversity effect through time (Reich et al., 2012; Tilman et al.,
2006; Zuppinger-Dingley et al., 2014).

Collectively, our results demonstrate the relative importance of in-
traspecific trait variability to the functional diversity of plant commu-
nities highlighting its relevance for alleviation of competition and
promotion of species complementarity.
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