Population differences in juvenile survival under increasing drought are mediated by seed size in cork oak (*Quercus suber* L.)

J.A. Ramírez-Valiente a, F. Valladares c,d, L. Gil b, I. Aranda a,*

aInstituto Nacional de Investigación Agraria y Tecnología Agroalimentaria, Centro de Investigación Forestal, Unidad Mixta INIA-UPM, Carretera Coruña Km 7.5, E-28040 Madrid, Spain
bUnidad de Anatomía, Fisiología y Genética Forestal, Escuela Técnica Superior Ingenieros de Montes, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
cInstituto de Recursos Naturales, Centro de Ciencias Medioambientales, CSIC, Serrano 115, E-28006 Madrid, Spain
dDepartamento de Biología y Geología. Escuela Superior de Ciencias Experimentales y Tecnológicas, Universidad Rey Juan Carlos, c/Tulipán s/n, E-28933 Móstoles, Spain

**A B S T R A C T**

Many studies have focused on the physiological and morphological responses of *Quercus suber* to high temperatures and summer drought. Nevertheless, our understanding of the potential of this species to cope with climate change is incomplete. An increase in severity, length and frequency of summer droughts is expected in the Iberian Peninsula over the 21st century. We investigated the potential of cork oak to adapt to climate change in a 4-year study comparing seedling survival from thirteen Spanish populations in a common garden. Acorn size was evaluated as a possible adaptive trait enhancing stress resistance during establishment. Populations originating from sites with the driest summers exhibited the highest survival rates under dry conditions. These populations were characterized by bigger acorns, suggesting selection for this trait across sites experiencing drought. Our findings reveal that northern populations are not well adapted to cope with increasing drought but suggest that they might cope well with the moderate drought increase expected for these zones. However, continental populations are intermediate adapted to dry conditions, while drastic and fast increases in summer droughts are expected to occur in these regions. This extensive and quick change will provide scant chances to adapt making the populations of cork oak in these regions particularly vulnerable to the future climatic conditions.

© 2009 Elsevier B.V. All rights reserved.

1. **Introduction**

The Mediterranean basin is one of the European regions expected to be most affected by climate change, with temperatures expected to increase at least 2–4 °C, over the next century (Christensen et al., 2007). Precipitation is expected to decrease during summer and autumn, but to increase in winter (Déqué et al., 1998), with an overall decrease in water availability due to increased evapotranspiration, especially during the summer. If this change is as rapid as expected, forest climatic zone boundaries could move more rapidly than forest tree species can migrate (Davis and Zabinski, 1992; Higgins and Harte, 2006), so the survival of forest tree species will increasingly depend on evolutionary change (Davis and Shaw, 2001; Etterson and Shaw, 2001). In the short term, the potential of species to respond to these rapid changes will depend on their phenotypic plasticity as much as intra-specific genetic variation for adaptive traits (Marchin et al., 2008).

Summer drought is the most important ecological filter to plant establishment in Mediterranean ecosystems and plants exhibit many morphological and physiological adaptations to cope with this environmental stress (Larcher, 2000). Seed size is one of the most important traits influencing the early stages of the life cycle of the plant. The importance of seed size in governing the fitness of progeny has been supported by extensive empirical evidence (Gómez, 2004); several studies have found that larger seeds help seedlings to endure drought (Leishman and Westoby, 1994; Seiwa, 2000), and promote germination (Milberg et al., 2000; Pearson et al., 2002), emergence (Castro, 1999), growth and survival (Seiwa, 2000; Baraloto et al., 2005). Species and population-level variation in this trait can be due to either maternal effects or local adaptation (Díaz-Fernandez et al., 2004). Maternal effects can be caused by the maternal genotype, the maternal environment, or both (Schmitt et al., 1992). However, environmental maternal effects are generally stronger than genetic effects (Byers et al., 1997; Hunt and Simmons, 2002). Seed size can be affected by maternal environment, since it is influenced by resource...
availability (Sultan, 1996; Krannitz et al., 1999; Wulff et al., 1999) and environmental stresses influencing the mother plant’s conditions during seed formation (Wolfe, 1995; Sultan, 1996; Vaughton and Ramsey, 1998). Seed size has been observed to be an adaptive trait associated with environmental variables such as latitude (Yakimowsky and Eckert, 2007), altitude (Yamada and Miyaura, 2005), temperature (Murray et al., 2004) and water availability (Parziak, 2002) but also with dispersal strategy and growth form (Moles and Westoby, 2004a). There are clearly two distinct time scales, the ecological and the evolutionary ones, but also to spatial scales, those corresponding to an individual tree vs. those corresponding to populations of trees under similar environmental conditions. Trends over populations provide information on evolution of seed size while individual responses to environmental conditions such as those by Quero et al. (2008) provide clues for mechanisms. Selection pressure on seed size acting through offspring fitness is widely accepted (Rees, 1997; Sakai et al., 1998; Leishman et al., 2000; Messina and Fox, 2001 and references therein). The importance of seed size lies in the influence that it exerts on seedling performance during establishment, especially under both competitive and resource-limiting conditions (Moles and Westoby, 2004b).

Cork oak (Quercus suber L.) is an evergreen tree species with a wide distribution in the western Mediterranean basin. It displays intermediate tolerance to drought and high temperatures, being considered a transitional species between the high drought-tolerant evergreen oaks such as Quercus ilex or Quercus coccifera (David et al., 2007) and the more mesic deciduous ones such as Quercus faginea or Quercus pyrenaica (Mediavilla and Escudero, 2003). In the Iberian Peninsula, the largest cork oak forests are located in Portugal and southwestern Spain, with other smaller forested regions in the north east of the Peninsula. Populations of cork oak become scarce and scattered going northward due to cold winters and eastward due to dry conditions and basic soils.

Models predicting suitable habitat for Iberian forest tree species under future climate change scenarios indicate that the range of Q. suber could decrease drastically in southern and inland Spain although it should persist along the southwestern coasts (Benito Garzón et al., 2008). It could also extend its distribution northwards and to higher altitudes benefiting from a potential increase in winter temperatures (Benito Garzón et al., 2008). However, those models that predict species redistribution with climate change largely ignore within-species genetic variation (Hampe and Petit, 2005). Genetic variation at the population level may extend or curtail the predicted range of a species more than previously assumed (Higgins and Harte, 2006).

Our overall goal was to determine the capacity of Q. suber to cope with expected climate change by comparing population-level differences in survival in a common garden. Our specific objectives were (1) to quantify population-level variation in survival under dry conditions, (2) to estimate the influence of acorn size on the response of Q. suber to local climatic conditions and (3) to identify which populations would be the most susceptible to the climate change expected for the region.

Owing to large differences in environmental conditions among populations, we expected that Q. suber presents high inter-population variation in adaptive traits as a consequence of adaptation to the climate at the place of seed origin. These differences in adaptive traits should be reflected in the probability of survival under standardized conditions in a common garden. We also expected to find divergence among populations in acorn size. We anticipated that individuals from more stressed sites have the biggest acorns as an adaptation to more intensive droughts (e.g. Murray et al., 2004).

2. Materials and methods

2.1. Common garden

The study was performed in a common garden within the La Sierra de Andújar Natural Park (38°21’54”N, 3°51’40”W, 560 m,
Jaen) (Fig. 1). The climate there is continental Mediterranean with hot dry summers and cold winters. Average annual precipitation is 617 mm and average annual temperature is 14.7 °C in January and the maximum monthly mean temperature in July is 34.4 °C (AEMET, Agencia Estatal de Meteorología, Table 1). The trial was laid out in a randomized complete block design and contained 13 populations, spanning the natural range of cork oak within Spain (Table 2). It included 30 blocks and four plants per population within each block (120 plants per population in total). Seedlings were planted with a spacing of 3 m × 3 m in a square plot.

2.2. Material and population characterization

Seed collection from native stands was made during the autumn–winter of 1996 from trees more than 100 m apart, to minimize the risk of sampling closely related individuals (see Skabo et al., 1998). Acorns were harvested from 20 to 30 trees per population. A sample of seeds (from 28 to 49 per population) was used to characterize the average acorn mass and size on a dry mass basis for each population (Table S1). Acorns were carried to a nursery and sown early in 1997. Acorns were carried to a nursery and sown early in 1997. Seed collection from native stands was made during the autumn–winter of 1996 from trees more than 100 m apart, to minimize the risk of sampling closely related individuals (see Skabo et al., 1998). Acorns were harvested from 20 to 30 trees per population. A sample of seeds (from 28 to 49 per population) was used to characterize the average acorn mass and size on a dry mass basis for each population (Table S1). Acorns were carried to a nursery and sown early in 1997.

2.3. Climate in the common garden and sites of origin

The study was carried out during the 4 years directly following planting in the common garden. Climatic data for this period were obtained from a meteorological station located 4 km from the trial site. Likewise, climatic data for the site of each parent population were obtained from their nearest meteorological station (AEMET, Agencia Española de Meteorología) A xerothermic index (\(Xi\)) was calculated from the climatic data, following Grossmann et al. (2002), using the formula: \(Xi = \Sigma(2TM - P)\) if 2TM > P or \(Xi = \Sigma(2TM - P)\) if 2TM < P, where TM is the monthly mean of the maximum and minimum temperatures (°C) and P is the monthly precipitation (mm) (Grossmann et al., 2002).

2.4. Survival

Survival was assessed every autumn for 4 years. We recorded “annual survival” each year and “final survival” in the last year of the study. “Annual survival” was defined as survival from year to year, ignoring those seedlings that had died at the time of the previous census. This produced an unbalanced design after the first year, but survival measurements were as independent as possible. Linear logistic models were constructed for final and annual survival data using proc GENMOD in the statistical package SAS 9.1 (SAS/STAT® Software; SAS Institute). A binomial distribution of the data was assumed and a logit function was used to link function and type 1 analysis.

The model equation is:

\[
\log \left( \frac{Y_{ij}}{1 - Y_{ij}} \right) = \mu + B_i + e_{ij}
\]

where \(\mu\) is the general media, \(B_i\) represents the main effect of the j block; \(P_i\) represents the main effect of the i population; \(e\) is the residual error for \(Y\).
2.5. Survival, seed effects and increasing droughts

To test whether seed size was maternally affected or locally adapted non-parametric Spearman’s correlations were performed between acorn traits and climate at the site of origin on the parent population. If subject to maternal effects, we expected that seed size was strongly influenced by the climate in 1996 (the year of ripening and collection) at the population-origin site, and if seed size was due to local adaptation we should find a stronger relationship between it and average climate.

To examine whether populations from drier sites responded better under dry conditions, we implemented non-parametric Spearman’s correlations between final and annual survivals, the xerothermic index of the native stands and geographic data. Seedling height and average acorn size from each population were included in these analyses in order to examine whether these traits affect survival.

To help us consider how these populations might respond to climate change, we determined the expected future climate for the studied populations over the three time periods (2011–2040, 2041–2070 and 2071–2080) by extrapolation of numeric data calculated using the model CGMC2 developed by the Canadian Climate Modelling Centre (Flato et al., 2000). As anthropogenic emissions of CO₂ have increased more than those proposed by any recent model (Canadell et al., 2007), we estimated the expected future climate under the A2 scenario. This family of scenarios describes a global socio-economic situation that would cause the highest increases in the anthropogenic emissions of carbon dioxide and other greenhouse gases (IPCC, 2007). We calculated the expected future xerothermic indices for each period and population. To evaluate how fast the climate could change, we subtracted the xerothermic index value for one period from the value for the preceding period, to obtain the slope of the expected change. Likewise, to estimate the magnitude of the expected change, we calculated this difference in the xerothermic indexes between the first and the last of these periods.

3. Results

3.1. Climate in the common-garden site during the 4 years of study

In general, the climate during the study was characterized by very low rainfall and normal/high temperatures during summer (Table 1). The most severe conditions occurred in 1999, when low annual rainfall (471.0 mm, 76.3% of the average value) and a dry summer (2.7 mm, 7.9% between June–September) coincided with relatively hot temperatures (33.7 °C maximum temperatures in summer, Table 1). However, 2000 was also severe and at its peak summer drought was a little more intense than in 1999 (xerothermic index = 149.5 in 2000 versus 148.7 in 1999).

3.2. Characterization of populations according to seed mass

Seed mass, width and length varied highly significantly \((p < 0.0001)\) among populations \(F_{12,499} = 47.953, 71.364\) and \(24.866\), respectively) and were strongly correlated with each other \((r = 0.88, 0.88\) and \(0.68\) for mass vs. width, mass vs. length and width vs. length, Table 3). ALM population had the heaviest \((7.74 \pm 0.23\) g) and the largest acorns \((\text{width} = 17.30 \pm 0.20\) mm, \(\text{length} = 38.52 \pm 0.46\) mm) (Table S1). Seeds from FIG were the lightest \((2.71 \pm 0.19\) g) and the shortest \((22.42 \pm 0.83\) mm) and those from POT were the narrowest \((13.96 \pm 0.21\) mm) (Table S1). Acorn mass was significantly negatively correlated with latitude, and average and 1996 summer precipitation (Figs. 2 and 3). Seedling size also differed among populations \((p < 0.0001)\), ranging from \(5.15 \pm 0.44\) cm for POT to \(19.73 \pm 1.47\) cm for JC (Table S1). Acorn parameters and seedling height were positively correlated (mass: \(r = 0.81, p = 0.001\); width: \(r = 0.82; p = 0.001\) and length: \(r = 0.77, p = 0.002\), respectively, Table 3).

3.3. Survival

Final survival was highly significantly different among populations \((p < 0.0001, \text{Table 4})\). It ranged from 24.2 ± 3.9% for FIG to 60.8 ± 4.5% for the LV population (Fig. 4). Likewise, annual population survival rates also differed significantly in 1998 \((p < 0.0001)\) and...
was no available climatic data for these populations in 1996. Block 29 90.282 *** (r = 0.004, Table 3; Fig. 5 a), and between final survival and acorn width & mass. S1998 1.00 0.71** 0.64 0.88*** 0.75** 0.74** 0.57** 0.08 0.88***
S1999 0.71** 1.00 0.61** 0.03 0.91** 0.45 0.59** 0.511 0.73** 0.80** 0.73** 0.75**
S2000 0.64 0.61** 1.00 0.33 0.82** 0.60 0.32 0.38 0.42 0.52** 0.62** 0.57
S2001 0.08 0.03 0.33 1.00 0.23 0.65 0.14 0.41 0.02 0.01 0.28 0.13
FS2001 0.88*** 0.91** 0.82** 0.23 1.00 0.57 0.60 0.60 0.73** 0.77** 0.76** 0.75**

Chi-square and significance values from the Generalized Linear Models to determine the sources of variation for annual survivals (Syear) and final survival (FS2001).

### Table 3
Speakman’s coefficient correlation (r) among annual survivals (S1998–S2001), final survival (FS2001), geographic data, xerothermic index (Xi) at the place of origin, seedling height before planting and acorn size and mass.

<table>
<thead>
<tr>
<th>Year</th>
<th>Longitude</th>
<th>Latitude</th>
<th>Xi</th>
<th>Seedling height</th>
<th>Acorn width</th>
<th>Acorn length</th>
<th>Acorn mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1998</td>
<td>-0.43</td>
<td>-0.45</td>
<td>-0.60</td>
<td>-0.65</td>
<td>-0.57</td>
<td>1.00</td>
<td>-0.47</td>
</tr>
<tr>
<td>S1999</td>
<td>-0.67</td>
<td>-0.50</td>
<td>-0.32</td>
<td>-0.14</td>
<td>-0.60</td>
<td>0.47</td>
<td>1.00</td>
</tr>
<tr>
<td>S2000</td>
<td>0.63**</td>
<td>0.51*</td>
<td>0.38</td>
<td>0.41</td>
<td>0.60</td>
<td>-0.63</td>
<td>-0.82</td>
</tr>
<tr>
<td>S2001</td>
<td>0.75**</td>
<td>0.73**</td>
<td>0.42</td>
<td>0.02</td>
<td>0.73**</td>
<td>-0.40</td>
<td>-0.71</td>
</tr>
<tr>
<td>FS2001</td>
<td>0.66*</td>
<td>0.73**</td>
<td>0.62</td>
<td>0.28</td>
<td>0.76**</td>
<td>-0.73</td>
<td>-0.87</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Table 4
Chi-square and significance values from the Generalized Linear Models to determine the sources of variation for annual survivals (Syear) and final survival (FS2001).

<table>
<thead>
<tr>
<th>Source of variation</th>
<th>d.f.</th>
<th>Selladores trial</th>
<th>Chi-square</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td>12</td>
<td>S1998</td>
<td>77.299***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S1999</td>
<td>52.842***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S2000</td>
<td>19.243**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S2001</td>
<td>111.314**</td>
</tr>
<tr>
<td>block</td>
<td>29</td>
<td>S1998</td>
<td>90.282**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S1999</td>
<td>238.740**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S2000</td>
<td>111.314**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S2001</td>
<td>90.077**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FS2001</td>
<td>361.02***</td>
</tr>
</tbody>
</table>

Chi-square values with asterisks are significant ( *p < 0.05, **p < 0.01, ***p < 0.001).

1999 (p < 0.0001). Also, there were marginally non-significant differences among populations in 2000 (p = 0.083) (Table 4). The lowest survival rates were from POT population in 1998 (65.0%, p = 0.042, Table 3; Fig. 6 b). Latitude and longitude were also negatively correlated with final survival (r = -0.60, p = 0.029 and r = -0.57 p = 0.042, respectively). Populations from southern and western sites had the highest survival. Survival in 1998 and 1999 was positively correlated with seedling height, acorn parameters and xerothermic index and negatively correlated with latitude (Table 3). Acorn mass and acorn size measurements were positively correlated with survival in 2000, and negatively correlated with longitude for both 2000 and 2001 (Table 3).

### 3.4. Survival, environmental factors and maternal effects

Correlation analysis revealed a significant, positive relationship between final survival and initial seedling height (r = 0.73, p = 0.004, Table 3; Fig. 5a), and between final survival and acorn parameters (width: r = 0.77, p = 0.002; mass: r = 0.76, p = 0.003 and length: r = 0.75, p = 0.003, Table 3). A significant positive correlation was present between final survival and the xerothermic index, meaning that seedlings from dry sites survived better (r = 0.60, p = 0.032, Table 3; Fig. 6b). Latitude and longitude were also negatively correlated with final survival (r = -0.60, p = 0.029 and r = -0.57 p = 0.042, respectively). Populations from southern and western sites had the highest survival. Survival in 1998 and 1999 was positively correlated with seedling height, acorn parameters and xerothermic index and negatively correlated with latitude (Table 3). Acorn mass and acorn size measurements were positively correlated with survival in 2000, and negatively correlated with longitude for both 2000 and 2001 (Table 3).

Future climate expectations for the original population sites are shown in Table 2. The climate is expected to become drier in all these sites. The largest increases in the intensity of summer drought (largest increases in xerothermic index) are expected in
Author's personal copy

FUE (148.1), PAR (135.9) and CA (127.4), while COL (46.4), FIG (57.3) and POT (57.9) are expected to have the smallest increases in drought intensity (smallest increases of xerothermic index) (Table 2). At the end of the 21st century, COL (xerothermic index = 61.2), POT (78.9) and FIG (100.5) are expected to still be the wettest populations, while CA (279.3), CB (244.2) and ALM (237.3) are expected to become the driest sites. CA, ALM and ABU are expected to suffer the fastest change (xerothermic index is expected to increase by 77.2, 55.4 and 51.8 for the period of 2011–2040). The climate is expected to change least abruptly at northern sites (xerothermic index for the period 2011–2040 is expected to increase by 6.1, 14.2 and 20.0 in COL, FIG and POT, respectively).

4. Discussion

Q. suber seedlings in our common-garden trial exhibited variation in survival at the population level. Populations from the wettest sites had the smallest average seed size and the lowest final survival under the dry conditions at the trial site. During the 4-year experiment, conditions at the common-garden site were drier than those typically recorded over much of species current range (xerothermic index $\approx 140$). However, these values are still far milder than the expected conditions in the southern and central Iberian Peninsula (xerothermic index $\approx 210$) and are more extreme than those expected for the northern sites (xerothermic index $\approx 80$).

Our study makes three important findings. The first is that there is a geographical pattern in a phenotypic trait (seed size) related to fitness in Q. suber. This contrasts with the low inter-population differentiation across the whole distribution range determined using isoenzymes markers ($F_{st} = 3.3\%$) [Jiménez et al., 1999]. In general, neutral markers are weakly correlated with selected genetic diversity (McKay et al., 2001; Reed and Frankham, 2001; Frankham et al., 2002). Q. suber is an outcrossing, wind-pollinated species and is continuously distributed across most of its range. These characteristics are likely to enable high gene flow among populations via pollen, which would prevent genetic divergence via drift and may account for the lack of spatial genetic structure of neutral markers (O’Brian et al., 2007). However, if selection is strong enough, local adaptation may evolve even in presence of gene flow (Endler, 1977), thus representing a potential mechanism to explain the structured distribution of survival observed in the present study.

Our second finding is that Q. suber seedlings originating from sites characterized by more intensive droughts exhibited significantly higher survival rates than those from regions where drought is less severe (Fig. 6b). This pattern shows that populations differ in their tolerance to drought stress, and could be caused by differences in physiological and morphological traits as consequence of an adaptation to local environmental conditions. Nevertheless, (1) larger mean acorn size of seedlings sourced from sites with high summer drought and at southern latitudes, (2) the positive relationship between acorn traits and seedling height and (3) higher survival rates of larger seedlings during the first years of growth, suggest that selection favors bigger seeds at the harshest sites. Selection for other physiological or morphological

Fig. 5. Relationships between final survival in the common-garden trial and seedling height (a) and acorn mass (b) for 13 populations of Quercus suber.

Fig. 6. Relationships between final survival in the common-garden trial and xerothermic index (a) and summer precipitation (b) for 13 populations of Quercus suber.
traits seems to be weak during the early years of seedling growth. In fact, only 2% of the variance in final survival explained by differences in xerothermic index was caused by factors other than acorn size.

Several studies have reported that bigger acorns lead to increased seedling growth (Buckley, 1982; Stock et al., 1990; Tripathi and Khan, 1990; Osunkoja et al., 1994) and higher root/shoot ratios (Buckley, 1982; Lloret et al., 1999), which can improve the seedling performance by developing and maintaining deep and extensive root systems accessing water from deep within the soil profile (Dell and Havel, 1989). Selection for big acorns as a consequence of selection for tall seedlings is likely to be stronger in water-limiting environments, indeed, a positive relationship among acorn size, seedling height and summer survival has been reported for other Mediterranean oak species (Gómez, 2004).

Thus, local adaptation through natural selection can drive acorn size divergence. However, other mechanisms could also explain the distribution of seed size observed in the present study. One alternative explanation is a non-genetic effect of the climate and latitude on acorn size. Aizen and Woodcock (1992) found a positive relationship between acorn size and latitude in American Quercus species. In another study, Díaz-Fernández et al. (2004) established that the percentage of biennial acorns produced and their ripening time differed with latitude across Q. suber populations. They suggested that a plastic response to shorter and (or) cooler growing season could explain these patterns. In our study, the conditions in 1996 were very similar to average climate and thus, there is a good correlation between acorn size and the two climatic data sets (see Figs. 2b and 3). This made it difficult to separate selection and environmental effects. However, acorn development in a Mediterranean climate is limited by high temperatures and summer drought, not by low temperatures, and in fact, humid and cooler summers could even favor acorn softening. So, although environmental conditions probably affect acorn size, the effect of local adaptation is likely to be greater in our study.

Arguments for the adaptive value of seed size should also consider that although seed size promotes survival during early growth of progeny, its influence diminishes considerably with age (Schaal, 1984; Roach and Wulff, 1987; Lopez et al., 2003). In 2001, no correlation was observed between seedling height and survival indicating no effect of seed size during this year. Furthermore, height was assessed in a trial sub-sample in 2005 and neither acorn size nor initial height seedling effects were obtained (data not shown). However, accumulated survival in 2005 was still highly correlated to acorn size and initial seedling size (data not shown), indicating that although seed effects diminish rapidly with time, their imprint can remain for a long period of time in the populations.

The third major finding of this study is that not all populations are equally vulnerable to climate change. Under the ongoing climate change, all Iberian Q. suber populations are expected to incur more intensive drought periods, but Northern populations (FIG, POT, COL) are poorly adapted to dry conditions, in the common garden and small acorns size). Theoretically, under a drier future climate these populations would not survive well. However, their xerothermic indexes are expected to remain low (low drought intensity) during the 21st Century. In fact, their xerothermic indexes for the immediate future are expected to be around half of that of the trial site during this study. Moreover, if the change in climate for these populations is slow and gradual (Table 2), they might be able to adapt to the drier environmental conditions. Southern populations (JC, HZ, ALM) are the best adapted to dry conditions (big acorns and high survival rates in the common garden). The climate change is expected to be fast for JC and ALM, and slow at the HZ population site. However, large increases of the intensity of summer droughts are not expected for these populations (Table 2). Owing to their relatively good adaptation to dry conditions, and the moderate climate change expected in these areas, these populations are expected not to be seriously affected under the future climate scenarios. The outlook for inland, continental populations is not as bright as for northern and southern ones. These populations are immediately adapted to dry conditions (moderate/high survival rates in the common garden and medium-sized acorns). However, drastic and fast increases in summer droughts are expected to occur in these regions (Table 3), so these central populations may not have much time to adapt to more arid conditions and could be substantially reduced.

The potential of the tree species to respond to the climate change will not only depend on the genetic variation in adaptive traits at among-population level, but also on the genetic variation at within-population level (Hamrick, 2004). Thus, intrapopulation divergence in adaptive traits should be analyzed in the future to better understand the potential of this species to cope with climate change.

In conclusion, our findings reveal important limitations in models assuming that all Q. suber populations in the Iberian Peninsula would respond similarly to climate change. Q. suber could disappear or become very scarce in most of inland Spain and Portugal due to the higher impact of the climate change in these areas combined with a moderate capacity of these populations to cope with arid conditions. Some new habitats may open up at the northern range limit, but overall the distribution of this species in Iberia is expected to be reduced.

Acknowledgements

We are grateful to Pedro Fernández, Laura Castro, Regina Chambel, José María Climent, Pilar Jiménez and all people from the Forestry School of Madrid that collaborated in the setting up of the cork oak field trials under the EU concerted action on cork oak, FAIR I CT 95 0202. We would like also to thank to Salustiano Iglesias and the DGB for the maintenance of the essays and partial financial support. We thank to AEMET (Agencia Estatal de Meteorología) for providing the climatic data. We thank to Hervé Bobbot, Christelle Fontaine and James Aronson for providing the map of the cork oak distribution. Finally, we would like to thank to Matthew Robson for reviewing the English version and his valuable suggestions. This work was funded by the Spanish Ministry of Science (PLASTFOR, AGL-00536/FOR), Spanish Ministry of Environment and DGB (Convenio UP-M-DGB). This study was supported by a MEC-FPI fellowship (BES-2005-7573) to J.A.R.V.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.foreco.2009.01.024.

References


